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Preface

Biomedical research is at a critical point at present. The research has led
to an enormous amount of data and models describing these data, but ap-
proaches for application, formalization and integration of this knowledge from
the molecular to the system level are still topics of ongoing research and cer-
tainly far from fully developed.

Also in cardiology the different anatomical and physiological constituents
as well as the coupling between them are being researched in increasing detail
and are often described using computer-based models. But for this domain an
integrative framework is still missing.

The application of computer-based modeling as a research, development
and clinical tool often necessitates the coupling of various models from differ-
ent levels. Describing the interactions between these models, which are both
physically sound and computationally efficient, determines the applicability
of such promising computer-based attempts.

My hope is that this book will contribute to the comprehension, spread and
impact of computer-based modeling in cardiology, both from a teaching point
of view and by summarizing knowledge from several, commonly delimited
topics relating to the cardiac manifoldness.

The book evolved from revision and extension of my professorial disserta-
tion (Habilitationsschrift) “Mathematical Modeling of the Mammalian Heart”
written in 2002. This dissertation was based on notes for the lectures “Com-
putational Biology: Bioelectromagnetism and Biomechanics,” “Simulation of
Physical Fields in the Human Body,” and “Anatomical, Physical and Func-
tional Models of the Human Body,” which I gave at the Universitat Karlsruhe
(TH) from 1998 to 2003.

Salt Lake City, 1 February 2004 Frank B. Sachse
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