Lecture Notes in Computer Science Edited by G. Goos, J. Hartmanis, and J. van Leeuwen

Frank B. Sachse

Computational Cardiology

Modeling of Anatomy, Electrophysiology, and Mechanics

Series Editors

Gerhard Goos, Karlsruhe University, Germany Juris Hartmanis, Cornell University, NY, USA Jan van Leeuwen, Utrecht University, The Netherlands

Author

Frank B. Sachse University of Utah Nora Eccles Harrison Cardiovascular Research and Training Institute 95 South 2000 East, Salt Lake City, UT 84112-5000, USA E-mail: fs@cvrti.utah.edu

Library of Congress Control Number: 2004104242

CR Subject Classification (1998): I.7, I.4, G.1, J.3, J.2

ISSN 0302-9743 ISBN 3-540-21907-2 Springer-Verlag Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting, reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are liable to prosecution under the German Copyright Law.

Springer-Verlag is a part of Springer Science+Business Media

springeronline.com

© Springer-Verlag Berlin Heidelberg 2004 Printed in Germany

Typesetting: Camera-ready by author, data conversion by Olgun Computergrafik Printed on acid-free paper SPIN: 10996478 06/3142 5 4 3 2 1 0

Preface

Biomedical research is at a critical point at present. The research has led to an enormous amount of data and models describing these data, but approaches for application, formalization and integration of this knowledge from the molecular to the system level are still topics of ongoing research and certainly far from fully developed.

Also in cardiology the different anatomical and physiological constituents as well as the coupling between them are being researched in increasing detail and are often described using computer-based models. But for this domain an integrative framework is still missing.

The application of computer-based modeling as a research, development and clinical tool often necessitates the coupling of various models from different levels. Describing the interactions between these models, which are both physically sound and computationally efficient, determines the applicability of such promising computer-based attempts.

My hope is that this book will contribute to the comprehension, spread and impact of computer-based modeling in cardiology, both from a teaching point of view and by summarizing knowledge from several, commonly delimited topics relating to the cardiac manifoldness.

The book evolved from revision and extension of my professorial dissertation (Habilitationsschrift) "Mathematical Modeling of the Mammalian Heart" written in 2002. This dissertation was based on notes for the lectures "Computational Biology: Bioelectromagnetism and Biomechanics," "Simulation of Physical Fields in the Human Body," and "Anatomical, Physical and Functional Models of the Human Body," which I gave at the Universität Karlsruhe (TH) from 1998 to 2003.

Salt Lake City, 1 February 2004

Frank B. Sachse

Acknowledgement

Many people merit my gratitude for their assistance and support in this work. I appreciate the scientific opportunities offered by the Institut für Biomedizinische Technik at the Universität Karlsruhe (TH), Germany, and the Nora Eccles Harrison Cardiovascular Research and Training Institute at the University of Utah, USA. Prof. Dr. Olaf Dössel, Prof. Dr. Karsten Meyer-Waarden and Prof. Dr. Bruno Taccardi provided me with an excellent platform for my 'hobby.'

I am thankful that this work has been supported by the Richard A. and Nora Eccles Fund for Cardiovascular Research and awards from the Nora Eccles Treadwell Foundation as well as several funds from the Deutsche Forschungsgemeinschaft. Also, I am grateful to the Rechenzentrum at the Universität Karlsruhe (TH), particularly Rolf Mayer, and the Scientific Computing and Imaging Institute, University of Utah, which made the necessary computing and visualization resources available.

Particularly, I want to express my gratitude to Leo Blümcke, Rotraut Frech, Matthias Mohr, Prof. Dr. Carlos Sansour, Gunnar Seemann, Dr. Jeroen Stinstra, and Oleg Skipa for their numerous comments and proof-readings of this work. A large thanks must be given to Dr. Christian Werner with whom I enjoyed working for more than 5 years. Many highlights of our project wouldn't have been possible without his various contributions. I'd like to extend this gratitude to Dr. Ingo de Boer, Nils H. Busch, Heiko Jausel, Rong Liu, Steffen Mang, Claudia Riedel, Manfred Schroll, Lars Thomas, Daniel Weiš, Markus Wolf and many students who influenced this work significantly. Further thanks go to Matti Stenroos from Finland as well as Nuno Sa Couto and Sergio Barros from Portugal, who not only added some international flavor, but also provided important contributions.

I'm grateful to my parents, my brother Jochen and nephew Jan, because they demonstrated that there are important things in life other than work. My friends Reza and Dawud deserve special thanks for not losing patience even though I neglected so many of our appointments. Finally, a huge thanks to Denise, who not only tolerated my particularities resulting from this work, but also encouraged and supported me in the best possible manner.

Contents

Pre	eface	• • • • • •		V
1	Intr	oduct	ion	1
	1.1	Motiv	ation	1
	1.2	Orgar	nization	3
2	Mat	thema	tical and Numerical Foundation	5
	2.1	Overv	[,] iew	5
	2.2	Einste	ein Summation Convention	6
	2.3	Tenso	r Algebra	6
	2.4	Nume	rics of Systems of Linear Equations	9
		2.4.1	Definition	9
		2.4.2	Direct Methods	10
		2.4.3	Iterative Methods	12
		2.4.4	Singular Value Decomposition	20
	2.5	Nume	rical Integration of Functions	21
		2.5.1	Definition	21
		2.5.2	Trapezoidal Rule	22
		2.5.3	Simpson's Rule	22
		2.5.4	Gauss Quadrature	23
	2.6	Nume	rics of Ordinary Differential Equations	23
		2.6.1	Definition	23
		2.6.2	Euler Method	24
		2.6.3	Runge-Kutta Method	25
	2.7	Nume	rics of Partial Differential Equations	27
		2.7.1	Definition	27
		2.7.2	Initial Values and Boundary Conditions	29
		2.7.3	Finite Element Method	30
		2.7.4	Finite Differences Method	43

3	The	eory of	f Electric Fields	49
	3.1	Intro	luction	49
	3.2	Physi	cal Laws	50
		3.2.1	Maxwell's Equations	50
		3.2.2	Poisson's Equation for Stationary Current Fields	51
		3.2.3	Electromagnetic Properties of Biological Tissues	52
	3.3	Nume	erical Solution of Poisson's Equation	57
		3.3.1	Finite Element Method	57
		3.3.2	Finite Differences Method	63
4	The	eory o	f Continuum Mechanics	69
	4.1	Intro	luction	69
	4.2	Defini	itions and Physical Laws	70
		4.2.1	Deformation Gradient	70
		4.2.2	Strain Tensors	73
		4.2.3	Stress Tensors	74
		4.2.4	Stress Equilibrium	75
		4.2.5	Constitutive Relationships	78
	4.3	Nume	rical Solution	83
		4.3.1	Principle	83
		4.3.2	Interpolation via Shape-Functions	84
		4.3.3	Determination of Element Equations	87
5	Dig	ital In	nage Processing	91
	5.1	Overv	view	91
	5.2	Digita	al Representation of Images	92
	5.3	Prepr	ocessing	93
		5.3.1	Overview	93
		5.3.2	Transformation of Coordinates	93
		5.3.3	Filtering Methods	98
	5.4	Segme	entation Techniques	102
		5.4.1	Introduction	102
		5.4.2	Thresholding	103
		5.4.3	Region Growing	104
		5.4.4	Watershed	105
		5.4.5	Deformable Models	106
		5.4.6	Manual Methods	112
	5.5	Princ	ipal Component Transform	112
	5.6	Textu	re Orientation	115
		5.6.1	Introduction	115
		5.6.2	Detection and Assignment	115
		5.6.3	Interpolation	117

6	Car	diac Anatomy	119
	6.1	Overview	119
	6.2	Microscopic Structures and Molecular Organization	121
		6.2.1 Myocytes	121
		6.2.2 Gap Junctions	131
		6.2.3 Connective Tissue Structures	133
	6.3	Macroscopic Structures	134
		6.3.1 Ventricles	134
		6.3.2 Atria	137
		6.3.3 Blood Vessels	139
		6.3.4 Valves	139
		6.3.5 System of Excitation Conduction and Initiation	140
		6.3.6 Nervous System	141
	6.4	Modeling of Anatomy	142
		6.4.1 Overview	142
		6.4.2 Analytical models	142
		6.4.3 Imaging Systems and Data Sources	144
		6.4.4 Modeling of Orientation and Lamination of Myocytes	145
		6.4.5 Models from the Visible Human Project	146
		6.4.6 Models from Magnetic Resonance Imaging	152
		0 0 0	
7	Car	diac Electrophysiology	157
	7.1	Overview	157
	7.2	Cellular Electrophysiology	158
		7.2.1 Experimental Studies	158
		7.2.2 Modeling of Cellular Components	164
		7.2.3 Models of Cardiac Myocytes	171
	7.3	Excitation Propagation	189
		7.3.1 Experimental Studies	189
		7.3.2 Modeling Approaches	194
		7.3.3 Cellular Automata	195
		7.3.4 Reaction Diffusion Systems	203
		7.3.5 Comparison of Macroscopic Models	
		of Excitation Propagation	214
8	Car	diac Mechanics	221
	8.1	Overview	221
	8.2	Mechanical Properties of Myocardium	222
		8.2.1 Experimental Studies	222
		8.2.2 Modeling Approaches	224
	8.3	Tension Development	236
		8.3.1 Mechanisms	236
		8.3.2 Experimental Studies	240
		8.3.3 Mathematical Modeling Approaches	245
	8.4	Mechanics in Anatomical Models	260

9	Mod	leling of Cardiac Electro-Mechanics
	9.1	Introduction
	9.2	Electrophysiology and Force Development of Single Cells 268
	9.3	Cellular Automaton of Cardiac Force Development
	9.4	Electro-Mechanics of the Myocardium
		9.4.1 Overview
		9.4.2 Simulations
		9.4.3 Limitations and Perspectives
Ap	pend	ix
	А	Physical Units and Constants
	В	Differential Operators
	С	Model of Stretch-Dependent Conductivity
		C.1 Model Assumptions
		C.2 General Formulation
		C.3 Restricted Formulation in Material Coordinate System . 296
		C.4 Coordinate System Transformation
Ref	eren	ces
Ind	ex	

List of Figures

1.1	Drawings of Leonardo da Vinci	2
1.2	Overview of modeling of cardiac electro-mechanics	3
2.1	Exemplary quadratic form in two dimensions	14
2.2	Euler method for numerical solution of ordinary differential	
<u></u>	equations	25
2.0	equations	26
2.4	Exemplary two-dimensional boundary value problem	20
2.5	Exemplary two dimensional finite elements	$\frac{20}{32}$
2.6	Natural coordinates in triangle, quadrilateral and tetrahedron	35
2.7	One-dimensional shape-functions	36
2.8	Two-dimensional bilinear shape-functions in quadrilaterals	38
2.9	Exemplary finite differences meshes	44
2.10	Exemplary node point numbering in two-dimensional mesh \ldots .	46
3.1	Rotation in local coordinate system	54
3.2	Conductivity of biological tissues in dependency on frequency	56
3.3	Permittivity of biological tissues in dependency on frequency	56
3.4	Exemplary coordinate transformation of hexahedron	60
3.5	Exemplary finite element with interpolation of potentials	61
3.6	Exemplary finite element with interpolation of current density	
	sources	62
3.7	Exemplary finite differences meshes for Poisson's equation	65
3.8	Exemplary node point numbering in three-dimensional mesh	66
4.1	Deformation in finite continuous medium	70
4.2	Stresses on faces of cube	75
4.3	Balance of forces	76
4.4	Hooke's law	79
4.5	Bulk modulus	80

4.6	Shear modulus	80
4.7	Deformation and incremental displacements in hexahedron	84
4.8	Calculation scheme of total Lagrangian incremental	
	formulation	88
51	Structure of digital image processing	02
5.1 5.9	Example w affine transformations	92
53	Exemplary radial basis function transformation	94 07
5.4	First and second order derivative filters	91
5.5	Comparison of average and median filter	100
5.6	Opening operator	101
57	Comparison of different edge detection filters	102
5.8	Segmentation of two-dimensional image with thresholding	102
5.9	Segmentation of three-dimensional image with thresholding	104
5.10	Segmentation of three-dimensional image with region growing	105
5.11	Two-dimensional image segmentation with active contour	100
	model	106
5.12	Potential function for active contour models	107
5.13	Three-dimensional image segmentation with active contour	
	model	109
5.14	Splitting of active contour model	110
5.15	Melting of active contour model	111
5.16	Interactive deformation of triangle mesh (2D)	113
5.17	Interactive deformation of triangle mesh (3D)	113
5.18	Exemplary textures with orientation	115
5.19	Three-dimensional editor for assignment of orientation	116
5.20	$\label{eq:examplation} Exemplary \ one-dimensional \ interpolations \ of \ orientations \ \ldots \ .$	118
5.21	$\label{eq:examplation} Exemplary \ two-dimensional \ interpolations \ of \ orientations \ \ldots \ .$	118
5.22	Exemplary three-dimensional interpolation of orientations \ldots .	118
~ .		
6.1	Historical outline of human heart with vessels, lungs and	1.00
0.0	trachea	120
6.2	Isolated canine left ventricular myocyte	121
6.3	Cardiac myocytes of hamster with connective tissue and	100
<u> </u>	capillaries	122
6.4 c.5	Molecular structure of phospholipid	123
6.5	Molecular structure of phospholipid bilayer (2D)	123
6.0 6.7	Molecular structure of phospholipid bilayer (3D)	124
0.1 6.9	Intracellular structures of mammalian cardiac muscle	120 196
0.8	Schematic view of sarcomere	120
0.9	Molecular structure of property II	127 199
0.10	Schemetic view of myosin II	120
0.11 6 19	Schematic view of myosin and actin myosin filaments	120
0.12	Molecular structure of potessium channel Kees	129 191
0.19	molecular structure of potassium channel rcsa	101

6.14	Microscopic section in canine left ventricular myocardium	. 132
6.15	Cardiac collagen network in the rabbit left ventricle	. 133
6.16	Molecular structure of collagen	. 133
6.17	Historical outline of opened human heart with atria and	
	ventricles	. 135
6.18	Superior view on ventricles and ostia of pig heart	. 135
6.19	Crista terminalis and musculi pectinati in opened right atrium	
	of pig	. 137
6.20	Historical photography of an opened left ventricle from cow	. 141
6.21	Model of left ventricular anatomy	. 143
6.22	Model of papillary muscle	. 143
6.23	Exemplary cryosection of the Visible Female data set	. 144
6.24	Clipping of a cryosection from the Visible Female data set	. 147
6.25	Model of visible man heart	. 148
6.26	Model of visible man heart: Anatomy and conduction system .	. 149
6.27	Model of visible female heart	. 150
6.28	Model of visible man heart with fiber orientation	. 152
6.29	Sections of three dimensional MRT data set from canine	
	heart	. 153
6.30	Anatomical model of canine heart	. 154
6.31	Anatomical model of canine heart with myocyte orientation	. 155
7.1	Action voltage measured at membrane of cardiac myocyte	. 159
7.2	Action voltages in human cardiac cells	. 160
7.3	Double cell voltage clamp technique	. 163
7.4	Cell membrane as capacitor and resistor	. 164
7.5	Nernst equation: Fluxes, potentials, and concentrations	. 165
7.6	Goldman-Hodgkin-Katz equation: Fluxes, potentials, and	
	concentrations	. 166
7.7	Schematic diagram of Hodgkin-Huxley model	. 168
7.8	Transmembrane voltage calculated with Hodgkin-Huxley	
	model	. 169
7.9	Rate coefficients of sodium channels of Hodgkin-Huxley	
	model	. 170
7.10	Rate coefficients of potassium channels of Hodgkin-Huxley	
	model	. 171
7.11	Schematic diagram of Noble model	. 173
7.12	Schematic diagram of Beeler-Reuter model	. 175
7.13	Results of simulations with Beeler-Reuter model	. 177
7.14	Schematic diagram of Luo-Rudy phase-1 model	. 178
7.15	Schematic diagram of Luo-Rudy phase-2 model	. 178
7.16	Results of simulations with Luo-Rudy phase-2 model	. 179
7.17	Schematic diagram of Demir-Clark-Murphey-Giles model	. 181
7.18	Results of simulations with Demir-Clark-Murphey-Giles	
	model	. 182

7.19	Results of simulations with Priebe-Beuckelmann model	. 183
7.20	Schematic overview of Noble-Varghese-Kohl-Noble model	. 184
7.21	Results of simulations with Noble-Varghese-Kohl-Noble	
	model	. 185
7.22	Stretch function for weighting of ion conductances	. 186
7.23	Simulations with varied static length of sarcomere (part 1)	. 188
7.24	Simulations with varied static length of sarcomere (part 2) \ldots	. 189
7.25	Simulation of initiation of action impulse by stretch (part 1)	. 190
7.26	Simulation of initiation of action impulse by stretch (part 2) \dots	. 191
7.27	Exemplary electrocardiogram of normal, adult human	. 192
7.28	Electrograms measured at surface of papillary muscle	. 193
7.29	Modeling of electrical intercellular coupling	. 195
7.30	6- and 26-neighborhood of cells in cellular automaton	. 196
7.31	Excitation wave simulated with a cellular automaton	. 197
7.32	Transmembrane voltage distribution of sinus rhythm (surface)	. 198
7.33	Transmembrane voltage distribution of sinus rhythm (volume).	. 199
7.34	Current source density distribution of sinus rhythm (volume)	. 200
7.35	Body surface potential map of sinus rhythm	. 201
7.36	Simulated electrocardiograms of sinus rhythm	. 202
7.37	Rotation of wave around obstacle simulated with cellular	
	automaton	. 203
7.38	Atrial flutter simulated with cellular automaton	. 204
7.39	Ventricular flutter simulated with cellular automaton	. 205
7.40	Simulated RF ablation in human right atrium with flutter	. 206
7.41	Bidomain modeling of cardiac electrophysiology	. 210
7.42	Freely rotating spiral waves simulated with bidomain model	. 212
7.43	Rotation of wave around obstacle simulated with bidomain	
	model	. 213
7.44	Model of heart wall in anatomical context	. 214
7.45	Simulation of electrophysiology in static model of heart wall	. 215
7.46	Excitation propagation in static model of heart wall	. 216
7.47	Intracellular calcium concentration in static model	
	of heart wall	. 217
7.48	Simulation of scroll wave in static model of heart wall	. 218
0.1		004
8.1	Iriaxial-measurement snear-test devices for soft tissue	. 224
8.2	Measurement system with epicardial suction	. 225
8.3	Strain energy density proposed by Demiray	. 227
8.4	Strain energy density proposed by Needleman et al.	. 228
8.5 0.6	Strain energy densities of Hunter-Nash-Sands (1D)	. 233
8.0 0.7	Strain energy density proposed by Hunter-Nash-Sands (3D)	. 234
8.7	Lension derived from strain energy density	0.95
0.0	OF HUNDER-NASH-SANDS	. 235
8.8	States and transitions of actin-activated myosin II ATPase	000
	cycle	. 238

8.9	Sliding of myosin and actin filament	239
8.10	Attachment to actin to myosin and its folding	239
8.11	System for measurement of force in single myocytes	244
8.12	Myocyte clamped between two carbon graphite fibers	244
8.13	Steady state simulations with Hunter-McCulloch-ter Keurs	
	model	249
8.14	State diagram of 1st Rice-Winslow-Hunter model	251
8.15	Sarcomere overlap function	252
8.16	Steady state simulations with 1st Rice-Winslow-Hunter model .	253
8.17	Dynamic simulations with 1st Rice-Winslow-Hunter model	254
8.18	State diagram of 3rd Rice-Winslow-Hunter model	255
8.19	Steady state simulations with 3rd Rice-Winslow-Hunter model .	255
8.20	Dynamic simulations with 3rd Rice-Winslow-Hunter model	256
8.21	State diagram of Glänzel-Sachse-Seemann model	258
8.22	Steady state simulations with Glänzel-Sachse-Seemann model	259
8.23	Evaluation of cooperativity mechanisms	261
8.24	Left ventricle approximated with cubic elements	262
8.25	Slices with myocyte orientation (part 1)	262
8.26	Slices with myocyte orientation (part 2)	263
8.27	Deformed ventricle with myocyte orientation	
	$(-45^{\circ}, -45^{\circ}, -45^{\circ})$	264
8.28	Deformed ventricle with myocyte orientation $(-45^\circ, 0^\circ, 45^\circ) \dots$	265
8.29	Deformed ventricle with myocyte orientation $(0^\circ, 0^\circ, 0^\circ)$	266
9.1	Modeling of coupled cellular electro-mechanics	268
9.2	Static simulations: Noble et al. and 1st Rice et al. model	269
9.3	Static simulations: Luo-Rudy and 3rd Rice et al. model	270
9.4	Static simulations: Noble et al. and 3rd Rice et al. model	271
9.5	Static simulations: Priebe et al. and Glänzel et al. model	272
9.6	Cellular automaton of cardiac force development	273
9.7	Force development simulated by cellular automaton	~ - /
	(surface, part 1)	274
9.8	Force development simulated by cellular automaton	~
0.0	(surface, part 2)	275
9.9	Force development simulated by cellular automaton	
	(volume, part 1)	276
9.10	Force development simulated by cellular automaton	~
	(volume, part 2)	277
9.11	Modeling of electro-mechanics in myocardium	278
9.12	Coupling of myocytes with gap junctions and extracellular	0.51
0.10	space	279
9.13	Force development in static model of heart wall	279
9.14	m 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	Transmembrane voltage in fully coupled model	280
9.15	Transmembrane voltage in fully coupled model Normalized force and deformation in fully coupled model	280 281

9.17	Apical view on deformation in ventricular model (part 2) $\dots 285$
9.18	Ratio of endocardial volume in electro-mechanical model $\ldots \ldots 285$
9.19	Parameters extracted from electro-mechanical model (part 1) $\dots 286$
9.20	Parameters extracted from electro-mechanical model (part 2) $\dots 286$
9.21	Deformation in biventricular model
9.22	Deformation in diffusion weighted MRT bivent ricular model $\dots 288$
C.1	Deformation of grid of resistors
C.2	Cube and deformed cube

List of Tables

2.1	Tensors of different order and type
2.2	Gauss quadrature
5.1	Linear, three-dimensional filters and their $3 \times 3 \times 3$ masks 99
7.1	Electrophysiological models of cardiac cells
8.1	Measurements of mechanical properties of myocardium
8.2	Models of mechanical properties of myocardium
8.3	Exemplary parameter set of Hunter-Nash-Sands model
8.4	Force measurements of cardiac muscle
8.5	Force measurements of cardiac myocytes
8.6	Mathematical models of force development in muscle
	and myocytes
8.7	State variables of Landesberg-Sideman force model
8.8	Tropomyosin and cross bridge state variables
	of Rice et al. model
8.9	Ca^{2+} binding to troponin C state variables
	of Rice et al. model
8.10	Rate coefficients
9.1	Parameters extracted from simulation with electro-mechanical
	model
A.1	Physical units
A.2	Physical constants