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1 Preface and notation

This is a short introduction to the computing and the inverse problem of
the TMS-evoked EEG potential. We only discuss the the EEG potential
at a single moment of the time, but the results also apply to a time series
of the EEG measurements if the possible time correlation of the sources is
not taking into account. The emphasis is on the elementary field computing
and the numerical simulation. Only the singular value truncation with the
discrepancy principle and the L-curve method is introduced for treating the
noisy data in the inversion problem.

In Chapter 2 we discuss the basic concepts of the EEG potential field
and its computing and in Chapter 3 the related inverse problem in general.
In Chapter 4 we treat the EEG potential of a layered sphere. In Chapters
5 and 6 the inverse problems of dipolar sources and sources distributed on
surfaces are discussed. In Chapter 7 the regularization by the singular value
truncation is introduced, and in Chapter 8 examples with synthetic data on
the inversions of surface current sources in the layered sphere are presented.
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In treating matrices we use the following MATLAB type notation. If A
is an M × N -matrix we denote by AT its transpose, and by A(m, :) its m:th
row and by A(:, n) its n:th column, m = 1, . . . ,M, n = 1, . . . , N . The matrix
A can also be presented by its columns as

A = [a1, a2, . . . , aN ] with an = A(:, n), (1.1)

or by its rows as

A = [b1; b2; . . . ; bM ] with bm = A(m, :). (1.2)

This notation also applies to vectors. A column vector is an N × 1 matrix
denoted as a = [a1; . . . ; aN ] = [a1, . . . , aN ]T , and a row vector is a 1 × N
matrix denoted as b = [b1, . . . , bN ]. The 3 × 1 column vectors we denote by
bold-faced letters like a.

2 Potential due to a current distribution in a

conductive body

Le D be a conductive body in the 3-space with a possibly non-constant
conductivity σ(r) > 0, r ∈ D. Outside D the conductivity σ = 0. Let
Jp(r) be a primary (or source, impressed, driving) current distribution in the
interior of D. Then the electric potential V (r) due to Jp is the solution of
the following (quasistatic and elliptic) boundary value problem,

∇ · (σ∇V ) = ∇ · Jp (2.1)

with the boundary condition

∂V

∂n
(r) = 0, r ∈ S, (2.2)

where the surface S is the boundary of D and

∂V

∂n
= n̂ · ∇V

is the normal derivative of V on S with n̂ being the (outer) unit normal of
S. Here we assume that Jp does not flow out from D, i.e., Jp · n̂ = 0 on S.
For a constant σ, (2.1) becomes the Laplace’s equation ∇ · ∇u = ∇ · Jp/σ.
With appropriate regularity demands on V the equation (2.1) with (2.2)
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has a unique (weak) solution V up to an additive constant, for a rigorous
formulation, e.g., see [1], page 197.

In our case D is the human head, Jp is the TMS-evoked (postsynaptic)
current distribution in D, S is the surface of the scalp and V (r), r ∈ S, is
the EEG potential, usually fixed by setting V (r0) = 0 on a reference point
(electrode) r0 ∈ S.

In our case we also assume that σ is piecewise constant, which implies that
V (r) is the unique solution with the following properties: V is a continuous
function everywhere in D, in each subdomain where σ is constant, V is twice
continuously differentiable and on all interfaces T between two subdomains
Djand Dk with constant conductivities σj and σk, V satisfies the interface

condition,

σj

∂Vj

∂n
− Jp,j · n̂ = σk

∂Vk

∂n
− Jp,k · n̂ (2.3)

where Vj, Vk and Jp,j, Jp,k are the potential and the primary current in Dj

and Dk, respectively, and n̂ is the unit normal of the interface. Furthermore,
E = −∇V is the electric field, Jv = σE = −σ∇V is the induced or volume

current and J = Jp+Jv is the total current. The equations (2.2) and (2.3) are
the usual continuity conditions for the total current stating that the normal
component of J must be continuous across any interface.

In the general case of a inhomogeneous (non-constant) conductivity σ
usually the boundary value problem (2.1) - (2.2) is numerically solved by the
finite element method (FEM). If σ is piecewise constant, and there are not
too many subdomains of constant conductivity, the boundary element method

(BEM) with the surface integral equations is also a practical numerical solving
method for the problem (2.1) - (2.2).

In simple geometries like a homogeneous full space or a homogeneous

sphere, an analytic solution for (2.1) - (2.2) is available, or a solution given
by a series for some geometries like a layered sphere.

A current dipole with a moment Q at a point r′ is the current element

Jp(r) = δ(r − r′)Q, (2.4)

where δ(r − r′) is the Dirac’s delta function. The potential V (r) due to the
current dipole Jp is given by

V (r) = G(r, r′) · Q, (2.5)
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where G(r, r′) is the vector Green’s function of the potential problem (2.1) -
(2.2); its components Gj(r, r

′) are potentials due to the current dipoles

Jk = δ(r − r′) êk, k = 1, 2, 3, (2.6)

where ê1, ê2, ê3 are the unit coordinate vectors [1, 0, 0]T , [0, 1, 0]T and [0, 0, 1]T

of the 3-space R
3. We note that by the reciprocity of electric fields and

sources, G(r, r′) is equal to the electric field Ẽ(r′) at r′ ∈ D which we get
by inserting unit electric current through electrodes at points r and r0 on S
where r0 is the reference electrode (the sink).

If the Green’s function of the potential problem is known, the potential
due to a source current distribution Jp can be written as

V (r) =

∫

D

G(r, r′) · Jp(r
′) d3r′, r ∈ D. (2.7)

If the source Jp is distributed over a surface T ⊂ D or on a line L ⊂ D,
again the resulting potential is given by (2.7), where the integral is a surface
integral over T or a line integral over L, respectively.

In a homogeneous space with a constant conductivity σ the potential V
due to a current dipole Q at a point r′ is given by

V (r) =
1

4πσ

(r − r′

|r − r′|
· Q, (2.8)

and accordingly, the vector Green’s function is as

G(r, r′) =
1

4πσ

(r − r′)

|r − r′|3
. (2.9)

So, the potential V (r) due to a source current distribution Jp is by (2.7) as

V (r) =
1

4πσ

∫
(r − r′)

|r − r′|3
· Jp(r

′) d3r′ (2.10)

=
1

4πσ

∫
∇′ · Jp(r

′)

|r − r′|
d3r′, (2.11)

where the latter integral is obtained by using the identity:

∇′ · (
1

|r − r′|
Jp(r

′)) = ∇′(
1

|r − r′|
) · Jp(r

′) +
1

|r − r′|
∇′ · Jp(r

′)

and the Gauss divergence theorem.
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3 Inverse problem

Let V (r) be the potential in D due to the Jp as in (2.7). The EEG inverse
problem is the following task: if the potential V (r) is known on the outer
surface S of D, find the source current Jp. As well-known, in general, this
inverse problem does not have a unique solution because of the existence of
the so called silent source currents J0 in D which yield a zero potential on
the surface S. Namely, such an current can always be added to the solution
Jp of the inverse problem and Jp + J0 is another solution because it yields
the same surface potential on S. In the following some examples of silent
currents are presented.

Obviously any primary current Jp in G with ∇ · Jp = 0 is silent due to
(2.1). For instance, a closed current loop is a silent current of this type.

If T is a closed surface in some homogeneous subdomain of D and Jp

is on T a uniform surface current directed normally to T , then Jp is silent,
because in a homogeneous space the potential due to Jp is given by (2.10),
which now becomes the double layer potential of a constant surface density
and, therefore, vanishes outside T due to the solid angle theorem.

A rather general silent current Jp with ∇ · Jp 6= 0 is obtained by setting

Jp = σ∇u

where u is a smooth function in some homogeneous subdomain W of D
so that both u = 0 and ∂u

∂n
= 0 on the boundary of W . For instance,

u(r) = 1 + cos(π |r|2), |r| ≤ 1, is such a function in the unit sphere. Outside
W we set, u = 0. Then u satisfies (2.1) -(2.2), and therefore, the potential
V due to Jp coincides with u, and it follows that Jp is silent. In addition, we
easily can choose u so that ∇ · Jp = σ∇ · ∇u is non-vanishing.

Of course, there are plenty of non-silent primary currents. For instance,
any finite set of current dipoles at different points forms a non-silent current
source. A non-closed current curve with constant current strength is non-
silent, as well as a finite set of them with separate end points.

An important example of non-silent currents is a normally directed current

distribution Jp on a non-closed surface patch. In fact, such a current can be
inverted uniquely from the (exact) surface potential if the patch is known.
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This is important for EEG, because the cortical currents that produces the
measured EEG are normally directed to the cortical surface.

Though the general EEG inverse problem does not have a unique solution,
the situation greatly eases off, if we know that the primary current satisfies
appropriate restrictions.

If we know that the source consists of finitely many current dipoles at
different points, they can be, in principle, inverted from the (complete, non-
noisy) surface potential.

If we know that the source is distributed on an open surface patch in D,
the inverted source current, though not necessarily unique, may reveal some
characteristic features of the true source, like roughly its spatial distribution.

4 EEG potential of a layered sphere

A layered sphere with spherical regions of constant conductivity is a simplified
but widely used conductor model for the head. Besides its practical use in the
EEG inverse analysis, it also is an instructive theoretical model for studying
the realistic limits of the practical EEG inverse solution with noisy incomplete
measurement data and the uncertainty caused by the non-uniqueness of the
solution of the general EEG inverse problem.

Let us consider a layered sphere D with M spherical regions with constant
conductivities σ1, . . . , σM and the outer radii r1, . . . , rM so that the innermost
region is the sphere |r| ≤ r1 with the conductivity σ1 and the j:th region is
the shell rj−1 ≤ |r| ≤ rj with the conductivity σj, j = 2, . . . ,M.

For the surface potential V (r), r ∈ S due to a current dipole Q at a
point rQ, |rQ| ≤ r1, we can for V (r) = V (r, rQ,Q) derive an expression as
the following series,

V (r, rQ,Q) =
1

4πσM

∞∑

n=1

γn rn−1
Q

[
Q · r̂Q nPn(r̂ · r̂Q)+

(Q̂ × r̂Q) · (r̂ × r̂Q) P ′
n(r̂ · r̂Q)

] 1

rn+1
(4.1)

where r̂ = r/r, r = |r| , r̂Q = rQ/rQ and rQ = |rQ|, and the translation
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coefficients γn are given by

γn =
2n+1
n+1

rn
M

n
n+1

r2n+1
M c1,1 − c2,1

(4.2)

where



c1,1 c1,2

c2,1 c2,2



 = CM−1CM−2 · · ·C1 (4.3)

with the 2 × 2 matrices Cj given by

Cj =
1

2n + 1




(n + 1) + n

σj

σj+1
(n + 1)(1 −

σj

σj+1
) 1

r2n+1

j

n (1 −
σj

σj+1
) r2n+1

j n + (n + 1)
σj

σj+1



 (4.4)

for j = 1, . . . ,M − 1. If M = 1, we set c1,1 = 1 and c2,1 = 0 in (4.2)
for all n. Furthermore, Pn(t) is the Legendre polynomial of order n and
P ′

n(t) = dPn(t)/dt is its derivative, n = 1, 2, . . . . Both Pn(t) and Qn = P ′
n(t)

can easily be computed by the following algorithm:

P0(t) = 1, P1(t) = t, Q0(t) = 0, Q1(t) = 1, (4.5)

and

Pn+1(t) =
2n + 1

n + 1
t Pn(t) −

n

n + 1
Pn−1(t), (4.6)

Qn+1(t) = Qn−1(t) + (2n + 1)Pn(t), (4.7)

for n = 1, 2, . . . .

In (4.1) the series is written in terms of Pn(t) and its derivative P ′
n(t), n =

1, 2, . . . . In literature, e.g., see [2], usually this series is given in terms of
Pn(t) and the associated Legendre functions P 1

n(t), n = 1, 2, . . . ; however,
the latter form is not numerically stable if r̂Q × r̂ ≈ 0.

Note also that in (4.1) in forming r̂Q = rQ/ |rQ| we get division by zero if
rQ = |rQ| = 0. This can be avoided as follows: if rQ << 1, say rQ < 10−8 r1,
set

V (r) =
1

4πσM

γ1Q · r̂. (4.8)
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In a homogeneous sphere with the radius r and the constant conductivity
σ > 0, V (r, rQ,Q) in (4.1) can also be given in an analytical form as

V (r, rQ,Q) =
Q · r̂Q

4πσ

[2(r · r̂Q − rQ)

d3
+

1

rQd
−

1

r rQ

]
+

(Q × r̂Q) · (r̂ × r̂Q)

4πσ

[2r

d3
+

d + r

r d (r + d − rQ r̂ · r̂Q)

]
(4.9)

where d = |r − rQ| , r̂ = r/r, r̂Q = rQ/rQ, r = |r| and rQ = |rQ|. Again, if
rQ << 1, say rQ < 10−8 r, then (4.8) with γ1 = 3/r2 yields

V (r) =
3r · Q

4πσr3
. (4.10)

The layered sphere has often been used as an approximative conductor
model of head in the EEG field analysis with three spherical regions: the
brain, skull and scalp. Here we use in our numerical examples a head model
with the radii

r1 = 81 mm, r2 = 85 mm, r3 = 88 mm, (4.11)

and conductivities

σ1 = 0.33 Ω−1 m−1, (brain) (4.12)

σ2 = 0.0042 Ω−1 m−1, (skull) (4.13)

σ3 = 0.33 Ω−1 m−1, (scalp). (4.14)

With (4.1) we have computed the EEG potential V (r), |r| = r3, using N = 50
as the number of terms in the series (4.1). Also with (4.1) we can compute the
vector Green’s function G(r, r′) for the model. If we again use the notation
of (4.1), we by (2.5) get

G(r, r′) =




V (r, r′, ê1)
V (r, r′, ê2)
V (r, r′, ê3)



 , |r| = r3, |r′| ≤ r1, (4.15)

where ê1, ê2, ê3 are the unit coordinate vectors.

5 Inverse of dipolar sources in EEG

If we know that the source consists of finitely many dipoles at different points,
those dipoles with their locations can be inverted uniquely from a complete,

8



non-noisy EEG data, at least in principle. Here we shortly discuss how such
an inversion can be done by a straightforward least squares search.

Let Qn and pn, n = 1, . . . , N , be the unknown dipoles and their locations,
and let r1, . . . , rM ∈ S be the measurement points of the surface potential
V (r), r ∈ S. We assume that M ≥ 6N. Then

V (rm) =
N∑

n=1

G(rm,pn) · Qn, m = 1, . . . ,M. (5.1)

We write (5.1) in a matrix form as

A(x) Q = y (5.2)

where A = A(x) is an M × 3N matrix with rows

A(m, :) = [G(rm,p1)
T , . . . ,G(rm,pN)T ], m = 1, . . . ,M, (5.3)

x is the 3N × 1 column vector of the unknown locations,

x = [p1; . . . ;pN ], (5.4)

Q is the 3N × 1 vector of the unknown dipolar moments,

Q = [Q1; . . . ;QN ], (5.5)

and y is the M × 1 vector of the measurements,

y = [V (rm); . . . ; V (rM)]. (5.6)

We first solve the overdetermined matrix equation (5.2) for Q and get

Q =
(
A(x)T A(x)

)−1

A(x)T y, (5.7)

and by substituting that into (5.2) we get a non-linear equation for x as

F (x) = 0, with F (x) =
(
A(x)T A(x)

)−1

A(x)T y − y. (5.8)

Next (5.8) is solved for x by some appropriate solver of non-linear vector
valued equations, like Marquardt’s method. After having found y we get Q
by (5.7).

Numerical simulations. We ran the search algorithm in the spherical
head model in order to find N unknown dipoles, 1 ≤ N ≤ 10, both without
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and with measurement noise. The number N of dipoles was assumed to be
known.

We set N dipoles into random locations into the sphere |r| ≤ r1 with unit
moments in random directions. Next we computed the EEG potential V (rm)
due to the set of these dipoles at the uniformly distributed measurement
points rm, m = 1, . . . ,M, M = 67 on the upper hemisphere of the sphere
|r| = r3, see Figure (1). We used a random initial guess x0 for the unknown
position vector in the search algorithm.

−0.1 −0.05 0 0.05 0.1
−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

Figure 1: The 67 measurement points on the upper hemisphere seen from
above.

First we used noiseless data. The algorithm easily found one dipole.
Also two to three dipoles were found but now often a few restarts with new
random initial guesses were needed. For N ≥ 4 the dipoles were not found
without restricting random initial guesses. However, using random guesses
with distances less than 1 cm from the true positions, the dipoles were found
up to N = 10.

Next we added p % random noise to the measurement, the percentage
taken from the maximal value Vmax = max |V(r)| of the potential (by the
MATLAB command: y=y+p/100*Vmax*randn(size(y)); ). It turned out that
the search algorithm was rather vulnerable to noise with more than one
dipole. The algorithm found one dipole for noise p ≤ 10 %, two dipoles for
p ≤ 5 % and three dipoles for p ≤ 2 %. For N ≥ 4 the dipoles were not
found for p = 1 %. However, using random guesses with distances less than
1 cm from the true positions, the dipoles were found up to N = 10 even with
p = 1 %.
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6 Inverse of surface sources in EEG

If we know that the current Jp is distributed on a surface T ⊂ D, we can
search for it by expanding it in terms of the so called lead fields Lm(r′), r′ ∈
T , on that surface. The lead fields are simply defined by the Green’s function
G(r, r′) as

Lm(r′) = G(rm, r′), r′ ∈ T, m = 1, . . . ,M, (6.1)

wher r1, . . . , rM ∈ S are the measurement points on the boundary S of D.
The lead fields play a central role in the inversion problem because

V (rm) =

∫

T

G(rm, r′) · Jp(r
′) d2r′ (6.2)

=

∫

T

Lm(r′) · Jp(r
′) d2r′ = 〈Lm,Jp〉, (6.3)

where we have written the last surface integral over T as the scalar product

〈u,v〉 =

∫

T

u(r′) · v(r′) d2r′

in the space of all (integrable) vector valued functions u and v on T . Equation
(6.2) shows that our measurement only sees those sources Jp which are in
the function subspace L spanned by L1, . . . ,LM , i.e., of the form

Jp =
M∑

n=1

cn Ln, (6.4)

because the functions u in the orthocomplement of L, i.e., functions u with
〈Lm,u〉 = 0, m = 1, . . . ,M, are ’silent’ to our measurement V (r1), . . . , V (rM).
Therefore, it is reasonable to search for Jp in the form (6.4).

By substituting (6.4) into (6.2) we obtain,

V (rm) = 〈Lm,

M∑

n=1

cn Ln〉, m = 1, . . . ,M, (6.5)

or in the matrix form

Ac = y (6.6)
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where

Am,n = 〈Lm,Ln〉 =

∫

T

Lm(r′) · Ln(r′) d2r′, (6.7)

where 1 ≤ m,n ≤ M, c = [c1, . . . , cM ]T and y = [V (r1), . . . , V (rM)]T .

We solve (6.6) for c and get Jp as in (6.4). If det (A) 6= 0, the inverse
solution Jp is unique in the subspace L of ’non-silent’ source currents spanned
by L1, . . . ,LM . It is not necessarily the true source current Jtrue but its the
orthogonal projection of that into L. In that sense Jp is the ’minimal norm’

solution to the inverse problem, i.e., it solves (6.6) and has the smallest L2-
norm among all the functions J ∈ L which solve (6.6). So, it remains to
be seen if Jp really is equal to Jtrue, or if not, then how much it reveals the
characteristic features of the unknown Jtrue .

The good news for EEG is that, if T is a patch of the cortical surface and
the Jtrue is normally directed to T , as it usually is, then the inverted Jp is
a good approximation to Jtrue, in particular, if there are sufficiently many
measurement points with low measurement noise.

For the EEG inverse problem we still have to decide how to deal with
the measurement noise, i.e., how we solve (6.6), if the measured data in the
vector y contains noise. In the next chapter we present one of the elementary
methods to cope with noise: the singular value truncation.

7 Regularization with the singular value trun-

cation

The singular value decomposition (SVD) of an M × N matrix A is the rep-
resentation

A = U D V T (7.1)

where U is an M ×M unitary matrix, i.e., UT U = I, V is an N ×N unitary
matrix and D is a M × N diagonal matrix

D = diag (d1, . . . , dp), with p = min (M, N), (7.2)
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where the diagonal elements

d1 ≥ . . . ≥ dr > dr+1 = . . . = dp = 0, (7.3)

are called the singular values of A and r =rank(A) is the rank of the matrix
A (the maximal number of linearly independent column vectors of A). If we
write U and V in the terms of their columns,

U = [u1, . . . , uM ], V = [v1, . . . , vN ], (7.4)

we see that u1, . . . , uM form an orthonormal basis of R
M and v1, . . . , vN an

orthonormal basis of R
N , because U and V are unitary.

Consider the equation

Ax = y, where x ∈ R
N, y ∈ R

M. (7.5)

Due to (7.1) and the usual rules of the matrix multiplication we get

Ax =
r∑

n=1

dn〈x, vn〉un, (7.6)

where we denoted the scalar product of column vectors a, b ∈ R
m as

a · b = aT b = bT a = 〈a, b〉. (7.7)

For 1 ≤ k ≤ r the k-truncated SVD solution of (7.5) is the vector

x(k) =
k∑

n=1

1

dn

〈y, un〉 vn. (7.8)

If k = r = M = N , it is easy to see, due to (7.6) and the orthonormality of
the basis u1, . . . , uM and v1, . . . , vN , that x(k) solves (7.5) exactly. Otherwise,
by (7.6)

Ax(k) =
k∑

n=1

〈y, un〉un, (7.9)

and so the square of the residual, also called the discrepancy, is as

δk =
∣∣Ax(k) − y

∣∣2 =

∣∣∣∣∣

M∑

n=k+1

〈y, un〉un

∣∣∣∣∣

2

=
M∑

n=k+1

〈y, un〉
2 (7.10)
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because y, represented in the orthonormal basis u1, . . . , uM , is as

y =
M∑

n=1

〈y, un〉un. (7.11)

If dn ≈ 0 for n ≥ k + 1, we see by (7.6) that

y = Ax ≈
k∑

n=1

dn〈x, vn〉un =
k∑

n=1

〈y, un〉un, (7.12)

and
∣∣Ax(k) − y

∣∣ ≈ 0 by (7.10). So, x(k) satisfies (7.5) in this case very well.

On the other hand, x(k) is the shortest vector which satisfies

Ax =
k∑

n=1

〈y, un〉un (7.13)

because, if x solves (7.13), then by (7.6) and (7.13)

〈x, vn〉 =
1

dn

〈y, un〉, n = 1, . . . , k, (7.14)

and so by (7.8)

|x|2 =

∣∣∣∣∣x
(k) +

N∑

n=k+1

〈x, vn〉 vn

∣∣∣∣∣

2

=
∣∣x(k)

∣∣2 +
N∑

n=k+1

〈x, vn〉
2 ≥

∣∣x(k)
∣∣2 . (7.15)

This reasoning tells us that x(k) is a good regularized solution to (7.5) if all
dn are very small for n ≥ k + 1.

Let us next consider (7.5) with noise. Let

Axtrue = ytrue, (7.16)

and consider for x the equation

Ax = y, with y = ytrue + e (7.17)

with the noise vector e ∈ R
M . We want to regularize the solution of (7.17) by

the SVD truncation by choosing x(k) of (7.8) to be the solution. It remains
to decide how to choose the truncation index k to make x(k) a reasonable ap-
proximation to the true solution xtrue. We present here two heuristic methods
to choose k.
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(Morozov’s) Discrepancy Principle. If we (approximately) know |e|,
it is reasonable to choose k so that

δk =
∣∣Ax(k) − y

∣∣2 ≈ |e|2 (7.18)

because we know ytrue only to the accuracy |y − ytrue| = |e|. On the other
hand, if we let k increase, we make δk possibly much smaller, but at the same
time we start increasingly to model the error e in y and possibly increase the
error in x(k). So, by the Discrepancy Principle we choose k to be the largest
k for which

δk =
∣∣Ax(k) − y

∣∣ =
M∑

n=k+1

〈y, un〉
2 ≤ |e|2 . (7.19)

The L-curve method. By (7.6) we have

ytrue = Axtrue =
r∑

n=1

dn〈xtrue, vn〉un, (7.20)

and so by (7.8) we obtain

∣∣x(k) − xtrue

∣∣2 =

∣∣∣∣∣

k∑

n=1

1

dn

〈ytrue + e, un〉vn −
N∑

n=1

〈xtrue, vn〉vn

∣∣∣∣∣ (7.21)

=

∣∣∣∣∣

N∑

n=k+1

〈xtrue, vn〉vn +
k∑

n=1

1

dn

〈e, vn〉vn

∣∣∣∣∣ (7.22)

=
N∑

n=k+1

〈xtrue, vn〉
2 +

k∑

n=1

1

d2
n

〈e, vn〉
2. (7.23)

This shows that if dn become very small as k tends to r, the error in x(k) and
also the norm

∣∣x(k)
∣∣ increase rapidly as k increases toward r. On the other

hand, by (7.10) the discrepancy δk decreases to

M∑

n=r+1

〈y, un〉
2

as k tends to r.

So it is reasonable to let k increase and make δk smaller until
∣∣x(k)

∣∣ starts
to grow fast. This point where we should choose k = ktrunc often shows in
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the L-shaped curve which we obtain by plotting

log δk = log
( M∑

n=k+1

〈y, un〉
2
)

(7.24)

as the function of

log (
∣∣x(k)

∣∣2) = log (
k∑

n=1

1

dn

〈y, un〉
2
)

(7.25)

Then the ’kink’ of the L-curve corresponds to the truncation point k = ktrunc,
see Figure (2). However, in practice the L-curve may not resemble the L-
shape and so it may be difficult to see where the correct ’kink’ is.
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Figure 2: A typical L-curve with a clear kink for determining the truncation
point

The Discrepancy Principle is easy to apply in practice, if we really know
the size of error vector e, at least approximately. For instance, this is the
case if we know that e consists only of the measurement noise and we roughly
know that. But if e also contains unknown modeling error, like in using the
spherical model for a real head, or the measurement error is unknown, the
Principle becomes vague and difficult to apply.

The L-curve method is more robust in the sense that we do not need to
know anything about the error vector e. However, if the L-curve does not
have the wanted L-shape, also this method becomes vague and difficult to
apply.
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8 Examples on the inversion of surface cur-

rent sources in EEG

In the examples here we use the spherically layered sphere (4.12) - (4.14) as
the model of the head. The measurement points r1, . . . , rM are distributed
uniformly over the upper hemisphere |r| = r3 (the surface of the scalp), with
M = 67, see Figure (1).

Example 1: Normally directed source current on the spherical surface

|r| = r1.

The unknown current Jp is now of the form

Jp(r
′) = J(r′) r′/ |r′| , for |r′| = r1, (8.1)

where J(r′), |r′| = r1, is the unknown scalar function. If G(r, r′) is the vector
Green’s function and we use the notation of (4.1), we obtain the potential
V (rm) at the measurement points as

V (rm) =

∫

|r′|=r1

G(rm, r′) · Jp(r
′) d2r′

=

∫

|r′|=r1

V (rm, r′, r′/ |r′|) J(r′) d2r′

=

∫

|r′|=r1

Lm(r′) J(r′) d2r′, (8.2)

where

Lm(r′) = V (rm, r′, r′/ |r′|), for |r′| = r1, m = 1, . . . , M, (8.3)

are the scalar lead fields assigned to the measurement, see Figure (3). There-
fore, we seek for J(r′) in the form

J(r′) =
M∑

m=1

cmLm(r′). (8.4)

By inserting this into (8.2), we get the matrix equation

Ac = y (8.5)
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Figure 3: A graph of a typical scalar lead field Lm(r′) on the sphere |r′| = r1

for the unknown coefficients c = [c1, . . . , cM ]T where

Am,n =

∫

|r′|=r1

Lm(r′) Ln(r′) d2r′, (8.6)

for 1 ≤ m,n ≤ M, and y = [V (r1), . . . , V (rM)]T . We solve (8.5) for c and get
J and Jp as in (8.4) and (8.1).

The integral in (8.6) is over the sphere |r| = r1, and we use the following
integral rule for the numerical integration over a sphere with radius r1. Let

u(θ, φ) = Lm(r′) Ln(r′) with r′ = r1 [sinθ cos φ; sinθ sin φ; cos θ].

Then

Am,n = r2
1

∫ 2π

0

∫ π

0

u(θ, φ) sin θ dθ dφ ≃
N+1∑

p=1

2N∑

q=0

2π r2
1

2N + 1
wp u(θp, φq), (8.7)

where

θp = arccos(tp), p = 1, . . . , N + 1, (8.8)

φq =
2π

2N + 1
q, q = 0, . . . , 2N, (8.9)

and tp and wp are the N + 1 sampling points and weights of the Gaussian
integration rule over the interval −1 ≤ t ≤ 1. Because the lead fields are very
smooth, say N = 20, will do in (8.7).
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If we take the singular value decomposition of A, we see that A is a
regular matrix and the singular values decrease fairly slowly indicating a
good resolution in the inverse solution.

Example 2. Tangentially directed source current on the sphere |r| = r1.

here we assume that Jp is of the form

Jp(r
′) = Jθ(r

′) θ̂(r′) + Jφ(r
′) φ̂(r′), |r′| = r1, (8.10)

where θ̂(r′) and φ̂(r′) are the tangential unit coordinate vectors of the spher-
ical coordinates (r, θ, φ),

φ̂(r′) = [cos φ; sin φ; 0], (8.11)

θ̂(r′) = φ̂(r′) × r̂′, r̂′ = r′/ |r′| , (8.12)

where

r′ = r1 [sin θ cos φ; sin θ sin φ; cos θ]. (8.13)

Now the potential due to Jp is as

V (rm) =

∫

|r′|=r1

G(r, r′) · Jp(r
′) d2r′

=

∫

|r′|=r1

(
V (rm, r′, θ̂(r′)) Jθ(r

′) + V (rm, r′, φ̂(r′)) Jφ(r
′)
)

d2r′

=

∫

|r′|=r1

Lm(r′) · Jp(r
′) d2r′

(8.14)

with the vector lead fields

Lm(r′) = V (rm, r′, θ̂(r′)) θ̂(r′) + V (rm, r′, φ̂(r′)) φ̂(r′). (8.15)

Accordingly, we seek for Jp in the form

Jp(r
′) =

M∑

m=1

cm Lm(r′) (8.16)

and get for c = [c1, . . . , cM ]T the equation

Ac = [V (r1), . . . , V (rM)]T (8.17)
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with

Am,n =

∫

|r′|=r1

Lm(r′) · Ln(r′) d2r′. (8.18)

After having solved (8.17) for c we get Jp as in (8.16).

Example 3. Source current Jp on the sphere |r′| = r1 with free direction

of Jp/ |Jp|.

This is just the case in Chapter 6 with the surface T being the sphere
|r′| = r1.

Numerical simulations. We first examine how well our inversion method
finds a single dipole on the sphere |r′| = r1.

We start by setting a normally directed unit dipole at an arbitrary location
on the sphere |r′| = r1, compute the potentials V (rm), m = 1, . . . ,M, and
solve (8.5) for a normally directed Jp. The level curves of |Jp| are presented
in Figure (4) with the location of the source dipole marked with a circle. We
see that the level curve pattern of |Jp| shows the location rather well.
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Figure 4: The level curves of |Jp| where Jp is normally directed and the true
source is a normally directed dipole whose location is marked with a circle.

Next we repeat the same experiment so that both Jp and the source
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dipole are tangentially directed. The result is shown in Figure (5), where Jp

is depicted with arrows and |Jp| with level curves. In fact, it can be shown
that the inverted Jp is not equal to the true source dipole Jtrue but presents
the irrotational part of Jtrue in the Helmholtz decomposition of Jtrue into the
solenoidal and irrotational parts. This can be seen in Figure (5) Jp presenting
the ’return’ currents. However, the level curve pattern rather well shows the
location of the true source.
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Figure 5: The arrow field of Jp and the level curves of |Jp| where Jp and the
source dipole are tangentially directed. The location of the source dipole is
marked with a circle.

Next we study how well a source of three dipoles at arbitrary locations
on the sphere |r′| = r1 can be recovered by Jp.

First we let the dipoles and Jp be normally directed and add 10% non-
correlated noise to the measurements, the percentage taken from the maxi-
mum of the measured potential. The solution is regularized by the Discrep-
ancy Principle. The resulting |Jp| is shown in Figure (6). Again, the level
curve pattern fairly well shows the locations of the source dipoles.

Next the same experiment is repeated for tangentially directed 3 source
dipoles and Jp and with 10% noise. The solution is regularized by the Dis-
crepancy Principle. The results are shown in Figure (7). The level curve
pattern of |Jp| is somewhat more spread but again it shows rather well the
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locations of the source dipoles.
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Figure 6: Level curves of |Jp| where Jp and the 3 source dipoles (locations
marked with circles) are normally directed.

In the next experiment we put the source dipoles 1 cm below the surface
|r| = r1 where Jp is residing. So we search for an equivalent source current

Jp yielding the same measured potential as the true source.

The source dipoles have arbitrarily directed unit moments Q. We added
5% noise to the measurements and solved for three types of Jp: normally,
tangentially and freely directed. The solutions were regularized by the Dis-
crepancy Principle. The results are shown in Figure (8). We see that the
freely oriented Jp best shows the locations of the source dipoles.

In the Figure (9) the same experiment with 5 dipoles is repeated. Again
the freely oriented Jp seems to show the true positions best.

Example 3. In this example we search for the currents Jp on a rectan-
gular plate T in the yz-plane depicted in Figure (10). We let Jp be normally,
tangentially and freely directed. The corresponding lead fields are found as
in the Examples 1 and 2 by using the two orthogonal unit vectors û and
v̂ which span the plane of T . We choose three source dipoles at arbitrary
locations on T and compute the measurements, and thereafter, we search for
the solution Jp on T .
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Figure 7: Level curves of |Jp| where Jp and the 3 source dipoles (locations
marked with circles) are tangentially directed.
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Figure 8: Level curves of normally, tangentially and freely directed equivalent
currents Jp
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Figure 9: Locations of 5 dipoles and level curves of normally, tangentially
and freely directed equivalent currents Jp
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First we let the dipoles and Jp be normally or tangentially directed. We
must add slightly noise (10−6%) to the measurements and regularize by the
Dicrepancy Principle in order to remove the bad ill-poisedness of the matrix
A. The results are shown in Figures (11) and (12). We see that the normally
directed Jp slightly better shows the positions of the dipoles.
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Figure 10: Rectangular plate in the yz-plane in the upper hemisphere of the
spherical head model.

In the last experiment we let the 3 source dipoles be arbitrarily directed.
We add 1% noise to the measurements and use the Discrepancy Principle for
regularization. We let Jp be either normally, tangentially or freely directed.
The somewhat surprising results are shown in Figure (13). The normally and
tangentially directed Jp cannot at all find the true sources while the freely
directed Jp manages much better. Note that the upright plate extending
down to the center of the spherical model leads anyway to a rather ill-posed
EEG inverse problem.

This example suggests that the normally and tangentially directed Jp are
not good choices for an inverse candidate on a patch of surface if the direction
of the true source current is not rather accurately known.
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Figure 11: Level curves of the normally directed Jp on the rectangular plate
T .
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Figure 12: Level curves of the tangentially directed Jp on the rectangular
plate T .
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Figure 13: Level curves of the normally, tangentially and freely directed Jp

on the plate T with 3 arbitrarily directed source dipoles.
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