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Optical fiber in scattering medium

Launching collimated photons into a
scattering medium creates an
apparent center for diffusion that is
1/Ws’ in front of the launch point. P AT

Radiant exposure H

At a point of a surface, the radiant energy
incident on an element of the surface, divided
by the area of the surface [J/cm?|

H=Q/A=P%t/A=E*t

Irradiance E

At a point of a surface, the radiant energy flux (or
power) incident on an element of the surface,
divided by the area of the surface [W/cm?]
E =P/A

Fluence rate

Radiant exittance
* radiant dose rate

* radiant emittance

1D model

A simple expression approximates the penetration of light into a scattering tissue illuminated
with a broad collimated beam. This is a 1-dimensional solution, only a function of depth z.
The solution is not correct near the surface, but is correct within the tissue.

F(z) = E kexp(-z/0)
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Fluence rate

Fluencerate is a parameter that is proportional to
the concentration of photons

F =c*C[Wem™]
C = concentration[Jcm ™ ]

¢ = speed of light[cm/s]

Time-resolved diffusion

Diffusivity, x = cD [cm’ /5]
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Time-resolved diffusion of photons simply desctibes the diffusion of photon concentration (or photon
enetgy concentration) as a function of distance (r) from a point sourceand time (t) after the impulse of optical
enetgy deposition.
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Radiant exposure

H(r)= jcC(r,t)exp(—uact)dt
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Integration of F over time yields the time-independent overall exposure H. The H in
response to a sequence of impulses of value U, and frequency f, which present an average
power P = fU,; yields the time-independent steady-state expression for fluence rate in
response to a steady-state point-source of power.



Time-resolved fluence rate
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Steady-state fluence rate
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Air/tissue surface interface
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