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Problems

In a BAEP investigation, the EPs are assumed to be modeled by (4.4) and
related assumptions on statistical properties. The SNR of the first potential
X1 is defined by

STS

SNR =10 - log —————
% ENTvi]

and is assumed to be equal to =5 dB. All other EPs in the ensemble have
identical SNRs. How many EPs need to be averaged, using (4.12), in order
to increase the SNR to 10 dB?

The difference between two subaverages §,,(n) and §,, (n) is denoted
A8q(n) = Sag(n) = 84, (n).

The two subaverages have been obtained by splitting the ensemble in a
suitable way.

a. Explain why it is of interest to study the quantity As,(n) during the
acquisition of EPs.

b. Show that the variance of A3, (n) is equal to 402/M by making use of
the common assumptions associated with ensemble averaging.

Determine the impulse response of the exponential averager in (4.35). The
answer should be expressed as a function of the weight factor a and the
length N of the EP. Assume that §.(n) = 0, and recall that all EPs are
concatenated. Sketch the impulse response.

Computation of the ensemble variance estimate 52(n) in (4.17) has the dis-
advantage of requiring that the entire ensemble must be available before
2(n) can be computed. However, it may by desirable to monitor how the
ensemble variance evolves as the number of EPs increases. Derive an approx-
imate estimator which recursively computes the estimate of &12}7 y(n). It can
be assumed that the ensemble average 5, 17(n) has been stabilized to such a

degree that it can be approximated by its preceding estimate 5, r7—1(n).

o)

Determine the mean of the exponential averager 5. a(n) when 3.9(n) =
x1(n). Discuss the fact that E[S. a(n)] is unbiased, whereas it is asymptot-
ically unbiased when 3 (n) = 0.

a. The exponential averager is usually initialized by either 5. o(n) = 0 or
Se0(n) = z1(n). However, both these initializations suffer from certain
disadvantages. What are these disadvantages?
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b. Find that value of « of the exponential averager which makes the vari-
ance of 5. p7(n) equal to the variance of the ensemble averager 5, a7(n).

Derive the expression of the variance V' [5¢ a7(n)] in (4.38).

Determine the width of the frequency lobes of the comb filter at the -3 dB
point corresponding to:

a. the ensemble averager as a function of M and N, and
b. the exponential averager as a function of «.

In both these cases, it is assumed that the poles are well-separated such that
the influence of neighboring poles can be neglected. Compare the role of M
and « of the respective estimators.

Determine a closed-form expression for the -3 dB bandwidth of the peaks in
the exponential averager, expressed in terms of the parameters o and N.

In addition to determining the magnitude function of the ensemble averager,
cf. page 202, it is also of interest to determine its phase function.

a. Derive an expression for the phase function of the ensemble averager
and plot it.

b. Discuss how the phase function influences the repetitive signal and the
noise, respectively.

An anesthetized patient is periodically stimulated by short sound pulses to
continuously monitor the BAEP. The resulting waveforms first stabilize at an
amplitude of 0.6 'V in peak IV, but then suddenly decrease to an amplitude
of 0.2 uV.

a. For ensemble averaging, determine the delay in terms of the number of
stimuli until the amplitude (in the mean) has dropped below 0.3 pV?

b. Repeat the exercise in (a) for exponential averaging.

The ensemble average §,17(n) is often used to estimate the signal s(n) in
the observation model z;(n) = s(n) + v;(n), where v;(n) is zero-mean noise
with variance o2. The ensemble average can be computed recursively using
the following expression

Bam(n) = 8am—1(n) + gur(xar(n) — 8a,-1(n)),
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where gy = 1/M. Analogously, the weighted average $,, as(n) can be com-
puted recursively but using another expression of gp;. Determine g,; for
weighted averaging under the assumption that the noise variance is a?}i, and
then determine the recursion for agi =02

In the interval preceding the stimulus elicited at time n = 0, we want to
estimate the variance o2 from the background EEG signal, e.g., for later use
in the computation of the weighted average. It is assumed that the samples
z(—N),...,x(—1), are modeled as uncorrelated, Gaussian noise with mean
m, and variance 2. Determine the ML estimator of o2.

Determine the expression with which the variance of the weighted average
V[Sw,m(n)] can be recursively computed from V[, ar—1(n)]. The variance
V[8w,m(n)] is given in (4.68).

Determine E[$,(n)] and V[$,(n)] for weighted averaging under the assump-
tion that the signal amplitude varies and the noise variance remains fixed
for all EPs. Comment on bias and consistency.

Derive the optimal weights w; of the weighted average that minimizes the
following MSE criterion,

v 2
E (s(n) - waﬂn))
i=1

Each EP is described by x;(n) = s(n) + vi(n), where s(n) is deterministic
and v;(n) is random with variance o72..

a. Determine the optimal weights, and comment on their dependence on
the signal and noise.

b. Show that the optimal weights approach those in (4.67) when the con-
straint

is introduced; this constraint assures that the ensemble average is un-
biased.

Two cases of weighted averaging have been described in the text—either
varying signal amplitude or varying noise variance. In this problem, a third
case is examined where both amplitude and noise variance are allowed to
vary. Find the optimal weight vector for this case.
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4.18 Weighted averaging requires that the noise variance of each EP be estimated.
Although the estimator in (4.73) is adequate for certain applications such
as BAEP and SEP, it is less suitable for VEPs where the SNR is relatively
good. Suggest a variance estimator for the latter case which draws upon the
better SNR.

4.19 The weights required in weighted averaging can be adaptively estimated
by taking advantage of the assumption that signal and noise are uncorre-
lated [53]. The estimation is based on the adaptive linear combiner, shown
in Figure 3.13, but now with the primary input (i.e., the upper branch of
the block diagram) given by the ensemble average §,(n) and the M reference
inputs given by z;(n) = s(n) +v;(n) fori =1,..., M.

a. Assuming a steady-state situation, show that the LMS algorithm con-
verges in the mean to the optimum weight vector w°(n), cf. (3.55),

o) — 11 1"
w(n)—M—Sz(n)[a% oz oY
1+, —

i=1 t

b. Unfortunately, the weight vector that results in (a) is time-varying
through s(n) despite the fact that the noise is assumed to be stationary.
As a result, the weight vector obtained by the LMS algorithm is biased.
By introducing the constraint

wlil=1, (4.376)

which assures that the estimate is unbiased, a constrained LMS algo-
rithm can be developed which minimizes the MSE,

Ew=E [(ga(n) - wa(n))Z} “awT1 1),

where the constraint is multiplied by the Lagrange multiplier A\. Derive
the constrained LMS algorithm.

4.20 Another estimate of the normalization constant in (4.78) is given by
ala = tr(XTX).

Explain why this estimate is less suitable than the one given in the text.
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The ML estimator of a signal corrupted by stationary (i.e., ‘71211- = 02),
Laplacian noise is the ensemble median. Determine the ML estimator—
the weighted median—when the Laplacian noise has a variance which varies

from potential to potential.

Show that the recursive, robust averager with outlier rejection in (4.104),
whose influence function is given by the sgn function, tends to converge to
the median.

Determine an approximate expression for the -3 dB cut-off frequency F, of
the lowpass filter in Figure 4.20(b), assuming that the latency shifts 7 are
uniformly distributed. In other words, determine that Q. (= 27 F;) for which

01
sin EQCT 1
BQ) =07 =&
9% éc

For discrete-time jitter, show that the characteristic function Py(e’’) of the
“discretized” Gaussian PDF,

_ %
1 202

po(0) = e %%,
1/27rag

where 0 is an integer, is given by

Pg(e]“’): Z efag(w72ﬂn)2/2.

n=—oo

For Gaussian jitter, the resulting effect is lowpass filtering with a cut-off
frequency w. of

_ 033

o

We

Latency estimation based on cross-correlation of z(n) of length N and a
deterministic waveform s(n) of length M < N may be formulated as

no+M—1
7 =arg max Z z(n)s(n —no),

no€[0,N—M] neno

where 7 is the estimated latency, i.e., the argument which maximizes the
above cross-correlation. Suggest two different techniques for latency estima-
tion with better time resolution than that offered by the sampling interval
of the original signal.
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Derive a filter h(n) of length N that maximizes the SNR at n = N — 1 for
the model

z(n) =s(n)+v(n), n=0,1,... N -1,

where s(n) is deterministic and v(n) is stationary, colored, zero-mean, Gaus-
sian noise with correlation matrix R,.

Derive the ML estimator of the delay 6; when the EP is corrupted by station-
ary, colored, zero-mean, Gaussian noise with correlation matrix R,. Assum-
ing that the signal length NV is much larger than the correlation time d for
the noise v(n) and r,(k) = 0 for |k| > d (the so-called asymptotic Gaussian
PDF assumption), it can be shown that the inverse of the noise correlation
matrix R ! is given by [181, p. 33]

N-1

- T

R' =) o
i=0 "

where ); is an eigenvalue of R, for which the corresponding eigenvectors are
given by the discrete Fourier transform vector,

0= [ 1 et einhi .. n(N-Dfi T

VN

Make use of this result in the derivation of the ML estimator.

A multichannel variant of the Woody method may be used in which each
channel x;(l) is first processed by its corresponding matched filter h;(l),
followed by a weighted summation of the filter outputs which is used for
time delay estimation, i.e.,

P K

y(n)=>_ B (Z hi(1)ai(n — l)) :
i=1 1=0

where P denotes the number of channels. Discuss, in general terms, how to

choose the channel weights g;.

The inverse of the correlation matrix R, in (4.149) is required for weighting
of the samples in the averaged EPs with the ML estimate of the ensemble
correlation. The correlation matrix R, can be expressed as

R, = (1= p(n)) I+ p(n)11",

where, for simplicity, it is assumed that the power of the observed signal is
normalized to unity, i.e., 02(n) + 02 = 1. Find the inverse R, ! expressed
in terms of p(n) and the number M of EPs. Hint: Use the matrix inversion
lemma in (A.31).
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In weighting an averaged EP with the ensemble correlation, we have assumed
that s(n) is random. An alternative approach is to assume that s(n) is
deterministic (once the ensemble has been fixed).

a. Show that the weight minimizing the MSE criterion is given by

s2(n
w(n) = #02.
s2(n) + Wi

b. Propose estimators of s(n) and o2 in order to determine the weight
w(n) in (a).

When performing single-trial analysis, it may be of interest to minimize the
following MSE criterion:

gw =F [||XZ - (I)WZHQ] .

In the text, it was tacitly assumed that the obtained solution in (4.202)
corresponded to the minimum of the MSE. Show that this solution really
corresponds to the minimum.

An estimate of the signal correlation matrix R is required for implemen-
tation of the a posteriori FIR Wiener filter in (4.184). One approach to
develop an estimator is based on the model x; = s + v;, where it is assumed
that s is stationary and v; is uncorrelated from EP to EP.

a. Suggest an estimator which involves the summation of all cross-products
xix]T fori,5=1,..., M, while excluding i = j.

b. For this estimator, evaluate its behavior in terms of mean and variance.

Rather than minimizing the squared error over all possible realizations, as
done in (4.199), we can minimize the “instantaneous” error

E(wi) = ||x; — Pw|

for one particular realization of x;. Proceeding in a way similar to the
minimization of (4.199), the solution to this problem is found to be

VAVi = 'i’TXi,

which is identical to the right-hand side of (4.203).





