THE BRAIN
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Inside The Neuron
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'The Cerebral Cortex:

Some Basic Facts

Organizes sensation, learning, movements, speech, and
much more.

2—3 mm thick with about 10 billion neurons.

Ridges & valleys make up for 2.5 m”*.

Primary and secondary areas for information
processing.




T'he Nervous System

* Somatic nervous system — controls, e.g., muscular
activity in response to conscious commands
(“foreign affairs”).

* Autonomic nervous system — unconscious body
control, e.g., of the heart rate (“internal affairs”),

* sympathetic (“fight or flight”)

* parasympathetic (“read and digest”)




Electroencephalogram — EEG

The EEG reflects the electrical activity of the brain
as measured on the scalp with several electrodes.

Reflects the joint activity of millions of neurons.

The EEG signal often has a rhythmic (oscillatory)
pattern, characterized by frequency and amplitude.

Difterent diseases are characterized by different
rhythmic patterns.
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EEG Acquisition

Fen recorder
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Figure 17.2
Standard positions for placement of EEG electrodes. The abbreviations stand

for: A = auricle {or ear), C = ceniral, Cz = vertex, F = frontal, Fp = frontal pole, O =
occipital, P = parietal, T = temporal, Wires from pairs of electrodes are fed to ampli-
fiers, and these drive pen recorders.

International 10/20 electrode system




Important EEG Rhythms

* Delta, <4 Hz: deep sleep, large amplitude
* Theta, 4—7 Hz: drowsy, sleep, pathological

* Alpha, 8—13 Hz: relaxed, awake, closed eyes (but
suppressed when opened)

* Beta, 14—30 Hz: active cortex, low amplitude




EEG Signals — Examples
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Alpha, Beta, and Blink Artifacts
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T'he Use of EEG 'loday

* 'To investigate and diagnose
* epilepsy (with related surgical procedures),
* sleep disorders (many hour recordings),
* dementia,

* To design a brain computer interface.

* Other applications as well, but less common.




Onset of Epileptic Seizure
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The Soviets developed a
jet fighter controlled by
direct neural links,
allowing an individual to
pilot his jet by thought,
without using his arm or
leg muscles.

The most devastating killing machine ever built. His job: steal it!




Brain Computer Interface

(BCI) — Mental Prosthesis

* Goal: to give a severely handicapped person
with normal mental capacity the ability to
control a device that will provide
communication with the environment.

* "Two examples of devices are the speller and
the wheelchair.




BCI Principle

* Detect changes in the EEG
related to simple “mental”
tasks which may be used to
define an alphabet of

actions.

* Changes may be expressed
in terms of signal ampli-
tude, phase, spectrum,...
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BrainGate




EEG Modeling Aspects

¥ Stochastic versus deterministic
* (3aussian versus non-(Gaussian

* Stationary versus nonstationary, with slow or
abrupt changes, containing events

¥ Detail issues




Noise and Artifacts

* Any type of biomedical signal analysis must be
preceded by noise rejection.

* The rejection is simplified when separate signals can
be acquired not containing the desired signal
("reference signals”).

* EEG processing must deal with eye movements,
cardiac activity, muscular activity, and other types of
noise and artifacts.




EMG 1n the EEG
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Figure 3.8: A 5-s, multichannel EEG recording contaminated with intermittent
episodes of electromyographic artifacts. (Reprinted from Wong [66] with permis-
sion.)




Eye Movements and the EEG
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“Optimal” Noise Rejection

* Basic idea:

* estimate the noise of the observed signal by using
a set of reference signals, and

subtract the resulting noise estimate from the
observed signal.

* Linear model: weighting or filtering.

* Assumption: stationarity, ...




“Eye Movement” Electrodes

Figure 3.9: Electrode positions for the recording of EOG signals which reflect
horizontal (F; — Fy) and vertical (F'p, — I or F'p; — I1) eye movement. Note that
two other electrodes, I; and I, are used in addition to the electrodes of the 10/20
system shown in Figure 2.7.
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Linear Weighting

We assume that the EEG signal is composed of cerebral activity s(n)
which is additively disturbed by the EOG artifact vg(n),

x(n) = s(n) + vo(n). (3.30)

Another assumption in this approach is that the EOG reference signals
vi(n),...,vp(n) are linearly transferred into the EEG signal. Hence, it
seems reasonable to produce an artifact-cancelled signal $(n) by subtracting
a linear combination of the reference signals from the EEG, using the weights
wry ..., WHr,

M
s(n) =ax(n) — sz’vz(n) = s(n) + (vo(n)
i=1




Weights and 1The MSE

In the following, it 1s assumed that all signals are random in nature, with
zero-mean, and that s(n) is uncorrelated with the EOG signals v(n) at each
time n,

(3.34)

Mean Square
Error (MSE):




MSE Minimization

Differentiation of &y in (3.35) with respect to the coefficient vector w
yields

Vwéw = Vw (E [a:z(n)] -+ WTR,v(n)W — 2WTr:m,(n))
= 2Ry (n)w — 2rpy(n). (3.37)

The correlation matrix R,(n) of the reference signals describes the spatial
correlation between the different channels at each time n and is defined by

Ry(n)=FE [V(n)vT(n)]

Tvivq (n) Toive (M) 0 Tojuy (n)
Tvov (n) rvzvz(n) o Tuguyy (n)

AR (n) Tvprvo (n) o Topyopy (n)_




Assumption of Stationarity

Although the correlation quantities R, (n) and ry,(n) change over time,
we will for now assume that these quantities remain fixed over the observa-
tion interval of interest,

Setting the gradient V& in (3.37) equal to zero, we obtain the following
system of linear equations,

R,w° =r,,, (3.44)
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Adaptive Noise Rejection

x(n) = s(n)+ vo(n) s(n)
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MSE Criterion Minimization
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Noise Rejection — Filtered
Reterence Signals

x(n) = s(n)+ vg(n)
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Spectral Analysis of the EEG

* Spectral analysis based on the stationarity assumption:
* non-parametric, Fourier-based analysis, or
* parametric analysis based on AR modeling.

* Time-frequency analysis is suitable for non-stationary
signals.




Spectral Analysis of EEG

The analysis may be based on...

* the Fourier transform (the periodogram)

0o

Sc(e/®) = E re(k)e /™

k:—OO

* or on a linear, stochastic model such as the
autoregressive (AR) model:

x(n) = —aix(n—1)—... —ayx(n— p) +v(n)




Fourier-Based Spectral Analysis

* How to estimate the power spectrum from the
observed signal?

* What are the properties of the spectral estimator?

* Variations on the basic periodogram method to
improve its performance.




T'’he Pertodogram




Properties of the Periodogram

* Spectral leakage and...
* large variance...

* ...are combatted by the use of windowing and
segmentation & averaging — Welch’s method.




Periodogram & Segmentation
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Spectral Parameters

* Power in different spectral bands.

* Location, amplitude, and width of one or several
spectral peaks.

* Spectral moments and related measures such as the
Hjorth descriptors.




Spectral Parameters

«— Hy; = 3.1 Hz
Ho = 3.7 Hz
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Figure 3.17: The power spectrum of an EEG and related parameters: (a) relative
power (percentages) in four frequency bands reflecting delta, theta, and alpha ac-
tivity (split into two bands): (b) the Hjorth parameters mobility H; and complexity
Hs: and (c¢) the spectral slope estimated from the logarithmic power spectrum. The
EEG was recorded from a child with a brainstem tumor and is dominated by slow
rhythmic activity as reflected by the value of ‘H; of 3.1 Hz. (Adapted from Matthis
et al. [121]).




Irending of Spectral

Parameters

2 Wi as At




=
S
\

EEG and AR Modeling

EEG with alpha rhythm
|

N I SEH R TRE B ' ol ol
eIty

Signal produced by an autoregressive (AR) model

(parameters

estimated from the upper signal)



Autoregressive (AR)
Modeling

* Suitable for EEG rhythms which have spectra with a
"peaky” shape.

* Several parameter estimation methods exist which are
based on the linear prediction idea.

* Minimize the prediction error with respect to the AR
parameters in the mean square error (MSE) sense.




AR Modeling and Linear

Prediction
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AR Modeling and Linear

Prediction, cont’

AR model: r(n) = —ajz(n —1) — -+ —apx(n —p) + v(n)

FIR predictor:

Prediction
error:

criterion




AR Parameter Esttmation

* Estimation methods include:
* the autocorrelation/covariance method
* the forward/backward method
* Burg’s method
* (others not described in the textbook)

¥ Critical issue: model order determination




T'he Normal Equation

The AR coefhicients are obtained from the
following matrix equation:

- -1 -~

and the white noise variance from:

P
o =r2(0) + Y airs(i).
1=1




Multivaniate AR models

* Multivariate AR (MVAR) modeling is very common
within neuroscience to evaluate causality for brain
signals, e.g., during epilepsy (not covered in this course).

* Based on the Fourier transtorm of the estimated
MVAR model, several measures of causality can be
defined in the frequency domain.

* The next slide illustrates the information flow in cortex
during finger movement, as reflected by the EEG.




EEG Activity Propagation After

Finger Movement

Alpha rhythm

Alpha rhythm starting §

seconds before the finger

movement, and lasting 3
seconds after.




EEG Activity Propagation After

Finger Movement

Alpha rhythm

Beta rhythm

Visit eeg.pl for more info


http://eeg.pl/DTF
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Adaptive EEG Segmentation

* Assumption: piecewise stationary signal.
* Study: spectral changes.

* Required: definition of a measure indicating a change
of the power spectrum.

* Result: segments which are relevant for the clinician
(or, at least, for an automated classification program...).




Segmentation—Shiding Window
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Criterion for EEG Segmentation

A straightforward approach is to make use of a
spectral MSE criterion

1 [m . .
%/_n (Se(e’”,n)—S (ef(”,O))zdoo.

Disadvantages?




Spectra of a Segmented Signal
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Spectral Analysis of
Nonstationary Signals




Short- 11me Fourier 1ranstform

(STFT)

The Fourier transform in continuous time

X(Q2) /O:Ox(r)e_jgrd’c

is extended such that a 2-dimensional function is
obtained which describes frequency content at different
times:

9]

X(t,9Q) :/_oox('c)w(r—t)ejmdr
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Heart Surgery of an Infant

WWWW\llH’WM*I W‘W’V ¥ o
{4 |j un

'if &"{'w'.alﬁ'; :q.‘i‘ h

| ,3" " ‘Y.:'
In
' ‘

l*‘l(qu( ncy (llz)

1
1“ 1 =
l. 2 (
Rt !.". .

.-.L '.I** .

pressure




X : f \ \‘" » L l J d .d
iyltl'”l"l »,l,’ |rt Vh.‘ J.rfn,ui flll I‘ (\ || ' 5 'L 'l’\ ﬂ"\“\ , r‘" {1‘ J”

, 1 I '
EEG at the onset RIALALE ‘\, ‘ | i
of an epileptic seizure

|
I

0 s

o
o

I T

STEFT using a

1-s window

Frequency (Hz)
—
o

- -

STEFT using a

2-s window

STEFT using a

0.5-s window




> 1FI and Beyond

The STFT (spectrogram) suffers from poor resolution
in time and frequency:.

The use of a time-varying AR model may mitigate this
problem, or

the Wigner—Ville distribution (WVD), being a
quadratic time-frequency distribution with better
resolution in time and frequency...

...but with a problem — the presence of cross-terms —
that must be remedied.




Time-Varying AR Model

we will outline how the parameters of a time-varying AR model,

z(n) =—ai(n)x(n—1) —--- —ay(n)z(n — p) +v(n), (3.261)

can be estimated under the assumption that temporal variations are rela-
tively slow. In addition to the parameters ai(n),...,ap(n), the input noise
v(n) is also assumed to be time-varying with variance o2(n). Hence, the
time-varying power spectrum 1s given by

(3.262)




Time-varying AR during Seizure
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WVD-based

Time—Frequency Analysis

* (Quadratic, nonparametric methods offer improved
time—frequency resolution.

* The Wigner-Ville distribution (WVD) comes with a
number of modifications introduced to address its
limitations.

The resulting methods do not involve any particular
assumptions regarding the signal.

A continuous-time framework is commonly adopted to
facilitate the presentation.




T'he Ambiguity Function

The ambiguity function is designed to reflect uncertainty
in both time and frequency associated with a signal x(t).

Two versions of x(t) are intro-
duced, both shifted in time
and frequency.

s

I'he ambiguity function is then
defined as the correlation between x
the time and frequency shifted e T T

: : . x*(t — =)z(t + =)eVidt.
Slgnal versions (one Con]ugated). s ( 2) ( ‘2)

¥ (tiv, T)x(t; —v, —7)dt




Ambiguity function,

x(t) = s(t) cos(1t) = 21(t) + xo(t).

where
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T'he corresponding ambiguity function becomes

T

. T . T T\ s
Azt V)= (.’l’l(t - 5) + x5 (t — —))) (il?l(t + )) + z9(t + 3)) et dt
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= lA o(T, V) cos(S17) + i A(T,v — 2021) + iA (1,v +2Q),
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T'he Analytical Signal

* It is obvious from the previous slide that the ambiguity
function also includes two undesirable terms with
identical shape but translated +2Q,.

* It is possible to remove such crosscorrelation without
sacrificing signal information—the analytic signal.

* Since real-valued signals have symmetric frequency
components, of which one is redundant, we only need
to consider positive frequencies of the spectrum.




Analytical Signal in Math lerms

In the frequency domain, the analytic signal xa(t)

of x(t) is defined as:

2X(Q), Q> 0:;
xgmy:{o () 00 (3.228)

For z(t) = s(t) cos(£21t), we have that
Xﬂm_{o, QO <0,

Using the analytic signal, the resulting ambiguity
function no longer contains the two terms at +2(),.

The analytic signal is always assumed in
time-frequency analysis based on the WVD.




Ambiguity function, cont’
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Wigner-Ville distribution (WVD)

The continuous-time definition of the WVD is given by
the 2D-Fourier transform of the ambiguity function:

W (t, Q) = / / (1,V) ~Wto=I8 i
T

or expressed in terms of the signal itself:

z(t,Q) / / / s— = ) —W(E=8) e =I qsdydr
T or

/ r*(t — §) x(t + 2) e ¥ ar. (3.239)




Comparison of STFI and WVD
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T'he pseudo WVD

In order to emphasize the local properties in time of the
analyzed signal, it is desirable to use the pseudo WVD,
also known as the windowed WVD:

7

W) = | w(r)e M dr.




Cross- lerm Reduction

A general class of time—frequency distributions
—Cohen’s class—
has been introduced whose degrees of freedom can be
exploited for mitigating the cross-term problem, defined by

1 00 OO
O N)= 2_7r/ / g(1, V) A (T, v)e e qudr
., (I

The Choi—Williams 4
distribution (CWD). - o

0

—u'z‘r'z/(47r20)

g(t,v) =e o>




CWD and 2-Component Signal
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EEG at the onset
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