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Evoked Potentials (EPs)

* Event-related brain activity where the stimulus is
usually of sensory origin.

* Acquired with conventional EEG electrodes.

* Time-synchronized = time interval from stimulus to
response is usually constant.




EP = A 'Iransient Waveform

* Evoked potentials are usually "hidden" in the EEG
signal.

* Their amplitude ranges from o.1—10 pV, to be
compared with 10—100 pV of the EEG.

* Their duration is 2§—500 milliseconds.




Examples of Evoked Potentials

Note the widely difterent amplitudes and time scales.




EP — Definitions
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Auditive Evoked Potentials—
AEPs




Visual Evoked Potentials—




Somatosensory Evoked

Potentials—SEPs




SEPs during Spinal Surgery
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EP Scalp Distribution




A. COLOR ATTENTION DIFFERENCE WAVES

A. Evoked potentials
resulting from a color
task in which red and
blue flashed checker-
boards were presented
in a rapid, randomized
sequence at the center
of the screen.

B. Scalp voltage
distributions evoked

potentials at different
latency ranges.




Brainstem Auditive EP
(BAEPs) in Newborns
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BAEPs of Healthy Children
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Cognitive EPs
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“T'hey wanted to make thé hotel look like a troplc:a.l resort.
So along the driveway thEy planted rows of ..




Ensemble Formation

The observed EEG signal can be transformed into
an ensemble of M different potentials, with each potential 2;(n) described
by N samples,

o) R 0 N (T X— | g e | (4.1)




Formation of an EP Ensemble
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Model for Ensemble Averaging

Ensemble averaging is based on a simple signal model in which the potential
x; of the i*® stimulus is assumed to be additively composed of a deterministic.
evoked signal component s and random noise v; which is asynchronous to
the stimulus.

X; =S+ Vi, (4.4)

where fixed shape




Noise Assumptions

The noise v; of the ith EP,

vi(0)

'U,‘(_l)
. (4.6)

_‘U-j(."\‘? - 1)

is assumed to derive from the ongoing “noise” process v(n) which. in this
I model. 1s a stationary. zero-mean process,

Elv(n)] =0 (4.7)




Ensemble Averaging

The ensemble average is defined by

The more familiar (scalar)
expression for ensemble
averaging is given by




Ensemble Averaging
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Noise Variance

The variance of the ensemble average is inversely
proportional to the the number of averaged potentials,
that is:

E [(ga(n) - E[§a(n)])2]

1 M M
=33 3 Elui(n)y(n)]

i=1 j=1




Reduction of Noise Level

The noise estimate
before division by the — m—f|—
reduction factor

1/vVM

Reduction in noise level
of the ensemble average
as a function of
#potentials
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Exponential averaging

The ensemble average can be
computed recursively because:

1

S = —Xul
Sa,M = 37 AM LM

1 <1 assuming
—M( M-11p-1 +Xpr)
1

= Sq.M—1 + M(XM —SqM-1), M >1.

éa,,O — O)

Exponential averaging results from

replacing the weight 1/M with alpha:
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Noise Reduction of EPs with
Varying Noise Level

* Assumption: all evoked potentials have
* identical shapes s(n) but with
* varying noise level.

* Such an heterogenous ensemble is processed by
weighted averaging.




Weighted Averaging

The weighted average is obtained by weighting each
potential xi(n) with its inverse noise variance:

where each
weight w;
thus is

This expression reduces to the ensemble average when
the noise variance is identical in all potentials.




Weighted Averaging, cont’

How to estimate
the varying noise level?




Weighted averaging: An Example
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Robust Wavetorm Averaging

Potential #1 | Potential #100 | Signal estimate

(saussian
noise

Laplacian
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T'he Eftect of Latency Variations

Signal model:

x;(n) =s(n—06;) +vi(n)
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Loowpass Filtering of the Signal

The expected value of the ensemble average, in
the presence of latency variations, is given by:




Latency Variation and
Lowpass Filtering
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Techniques for Correction of
Latency Variations

Synchronize with respect to a peak of the signal or
similar property:

Crosscorrelation between two EPs.

Woody’s method for iterative synchronization of all
responses of the ensemble. The method terminates

when no further latency corrections are done.




Estimation of Latency
An Illustration

Input signal

Template
waveform

Correlation
function

Latency estimate




Woody’s Method
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Woody’s Method: Ditterent SNRs

not so

good SNR

bad SNR




SN R-based Weighting

Design a weight function w(n)which minimizes

E [(s(n) = Sa(m)w(n))”]

where s(n) denotes the desired signal and §,(n)

the ensemble average. The optimal “filter” is




SN R-based Weighting
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Noise Reduction by Filtering

* Estimate the signal and noise power spectra from the
ensemble of signals.

* Design a linear, time-invariant, linear filter such that
the mean square error is minimized, i.e., design a
Wiener filter.

* Apply the Wiener filter to the ensemble average to
improve its SNR.




Wiener Filtering
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Filtering of Evoked Potentials
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Limitations of Wiener filtering

* Assumes that the observed signal is stationary (which
in practice it is not...).

* Filtering causes the EP peak amplitudes to be severely
underestimated at low SNRs.

* As aresult, this technique is rarely used in practice.




Iracking of EP Morphology

* So far, noise reduction has been based on the entire
ensemble, e.g., weighted or exponential averaging

* We will now track changes in EP morphology by so-
called single-sweep analysis. More a priori information
is introduced by describing each EP by a set of basis
functions.




Selection of Basis Functions

* Orthonormality is an important function property
of basis functions.

* Sines/cosines are well-known basis functions, but it
is often better to use...

* ...functions especially determined for optimal (MSE)
representation of different waveform morphologies
(the Karhunen-Loéve representation).




Orthogonal Expansions

An EP x;, composed of both signal and noise, is modeled as a stochastic
process which can be represented by a linear combination (series expansion)
of basis functions ¢y,

N
Xi = ) WikPhs (4.187)
k=1

where each basis function is represented by a vector with N elements

pr(0)
pr(1)




Basis Functions: An Example

Linear combinations
of two basis functions
model a variety of
signal morphologies




Calculation ot the Weights

Introducing the matrix notation ® to represent the set of basis functions,

®=p; w2 - PN, (4.191)

we can write the series expansion in (4.187) more compactly as
X; = (I)Wz'. (4.192)

The orthonormality property implies that the basis functions are mutually
orthogonal, and with their energy normalized to one,

1, k=I;

the coeflicient vector w; can be calculated from x;
using the relation

W; = (I’sz'.

1
wik = PEXi = Y _ pr(n)zi(n)
n=>0




Mean-Square Weight Estimation

The calculation of w; can be treated from an estimation point of view in
which w; 1s chosen such that the MSE is minimized. Each EP x; 1s modeled

by
X; = 8; + Vi, (4196)

where E [x;] = s; since the noise v; is assumed to be zero-mean. The corre-
lation matrix for the i*® EP is

R., = E [xix; |. (4.197)

()

A suitable criterion to minimize would be the following MSE,

E [||si — ®wi|[*] = E [(si — ®wi) (s — ®w;)], (4.198)

. T i.e. identical to the
W; = P Xi, : :
previous expression




Truncated Expansion

The underlying idea of signal estimation through a
truncated series expansion is that a subset of basis

functions can provide an adequate representation of
the signal part.

Decomposition into

. . »=[d, ¥,
”signal” and "noise” parts: (a2

The estimate of the signal

. . §f,; — (I)SWi — (I)S(I)TXZ'.
is obtained from: ’




Truncated Expansion, cont’




Examples ot Basis Functions




Sine/ Cosine Modelmg
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Sine/ Cosine Modeling: Amplitude
Estimate and MSE Error
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MSE Basis Functions

How should the basis functions be designed so that the
signal part is efhiciently represented with
a small number of functions?

We start our derivation by decomposing the series
expansion of the signal into two sums, that is,

X = Z WPy + Z wepr = 8+ V, (4.223)
k=K+1

where the K first basis functions produce an estimate of s, and the remaining
(N — K) terms produce the noise estimate v. Our aim is now to find the set
of ¢;.’s that makes S resemble s as closely as possible. This objective can be
achieved by minimizing the noise power estimate in the MSE sense,

E=E[V]=E[x-8!x-9)], (4.224)




Karhunen—Loeve Basis Functions

The Karhunene—Loéve (KL) basis functions, minimizing
the MSE, are obtained as the solution of the ordinary
eigenvalue problem, and equals the eigenvectors
corresponding to the largest eigenvalues:

Rz@p = Ak@p l

The MSE equals the sum of the (N-K)

smallest eigenvalues

E= > M

k=K+1




K1, Performance Index

Given an ensemble of signals characterized by R,. a performance index
Rk can be defined which reflects how well the truncated series expansion
approximates the ensemble in energy terms,

Example of the
performance index 0.25 |




How to get Ry?

In practice, the correlation matrix R, cannot be estimated from a single
potential but must be estimated from the ensemble x1,x2,...,x57. The es-
timation of R, 1s commonly achieved by simply replacing the expected value
in the definition of R, (cf. (3.6)) by averaging the M rank-one correlation
matrices xz-x;fr for each of the EPs,

1 M
. 7
R, = — z_; XiX; . (4.244)




Example: KL Basis Functions
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T'1me-Varying Filter Interpretation
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Modeling with Damped Sinusoids

K
— Zwkepknej(wk'n"—d)k),
k=1
forn =0,...,N — 1. Each term of the expansion is characterized by its
amplitude wg, frequency wg, phase ¢, and a damping factor pr (pr < 0)
which determines the decay in amplitude.

* The original Prony method
* The least-squares Prony method

* Variations




Adaptive Estimation of Weights

x(n) = s(n)+ v(n)

LMS
algorithm

Figure 4.35: Adaptive linear combination of basis functions for the estimation of
the weight vector w(n), using the observed signal xz(n).




Adaptive Estimation of Weights

* The instantaneous LMS algorithm, in which the
weights of the series expansion are adapted at every
time instant, thereby producing a weight vector w(n)

* The block LMS algorithm, in which the weights are
adapted only once for each EP (“block”), thereby

producing a weight vector w; that corresponds to the
i:th potential.




Estimation Using Sine/Cosine




Estimation Using KL, Functions

o




[.imitations

* Sines/cosines and the KL basis functions lack the
flexibility to efhiciently track changes in latency of
evoked potentials, i.e., changes in waveform width.

* The KL basis functions are not associated with any
algorithm for fast computations since the functions are
signal-dependent.




Wavelet Analysis

Wavelets is a very general and powerful class of basis
functions which involve two parameters: one for
translation in time and another for scaling in time.

The purpose is to characterize the signal with good
localization in both time and frequency:

These two operations makes it possible to analyze the
joint presence of global waveforms (“large scale”) as
well as fine structures (“small scale”) in a signal.

Signals analyzed at different scales, with an increasing
level of detail resolution, is referred to as a multi-
resolution analysis.




Wavelet Applications

signal characterization

signal denoising

data compression

detecting transient waveforms

and much more!




T'he Correlation Operation

Recall the fundamental operation in orthonormal basis
function analysis: in discrete-time, the correlation between
the observed signal x(n) and the basis functions @k(n):

In wavelet analysis, the two operations of scaling and
translation in time are most simply introduced when the
continuous-time description is adopted:

= [ aOeutiat




'1The Mother Wavelet

A family of wavelets ¢, (t) is defined by scaling and translating the
mother wavelet ¥ (t) with the continuous-valued parameters s (> 0) and 7,

Yer(t) = % (t . T) , (4.208)

where
Thus,

Amplitude
o

[
o

Magnitude

o L] 0 - 0
0 2 4 6 8 0 2 4 6 8 0 2 4 6 8
Frequency Frequency Frequency

Figure 4.38: A wavelet shown at three different scales and the corresponding
bandpass frequency responses (the Meyer wavelet). Note that the center frequency

and bandwidth both increase as the wavelet is contracted in time.
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'The Wavelet 1ranstorm

The continuous wavelet transform (CWT) w(s,7) of a continuous-time
signal z(t) is defined by the correlation between 2(t) and a scaled and trans-
lated version of ¥(t),

w(s, T) = /_ Z x(t)%w (t R T) dt, (4.290)

The function 2(t) can be exactly recovered from w(s, 7) using the recon-
struction equation [152]

t—7)\ drds
C¢/ / w(s, T) ( : ) 2 (4.300)

(4.301)

where




T'he Scalogram
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'The Discrete Wavelet Iranstorm
The CWT w(s, t) is highly redundant

and needs to be sampled
Dyadic sampling s=270 T=k277,

The discretized wavelet

. Vi k(t) = 2972p(27t — k).
function

The discrete wavelet wip = / T (Ot
transform (DW'T) L e~

The inverse discrete
wavelet transform (IDWT)




Multiresolution Analysis

* A signal can be viewed as the sum of a smooth (“coarse”
part and a detailed (“fine”) part.

* The smooth part reflects the main features of the
signal, therefore called the approximation signal.

* The taster fluctuations represent the signal details.

* The separation of a signal into two parts is determined
by the resolution with which the signal is analyzed, i.e.,
by the scale below which no details can be discerned.




Multiresolution Analysis Exemplified
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Multiresolution Analysis, cont’

In mathematical terms this is expressed as:

The approximation of a signal x(t) at scale (resolution level) j is de-
noted ;(t). At the next scale j + 1, the approximation signal z;4;(t) is
composed of x;(t) and the details y;(t) at that level such that

2j41(t) = (1) + y(0). (4.300)

By adding more and more detail to x;(t) we arrive, as the resolution ap-
proaches infinity, at a dyadic multiresolution representation of the original
signal z(¢) which involves a smooth part and the sum of different details,

o0

(4.310)
=]




T'he Scaling Function

% The scaling function @(t) is introduced for the purpose

of efficiently representing the approximation signal x;(t)
at difterent resolution.

This function, being related to a unique wavelet

function |(t), can be used to generate a set of scaling
functions defined by difterent translations:

SOO,k(t) — (,O(t T k)a

where the index “0” indicates that no time scaling is
performed.




T'he Scaling Function, cont’

The design of a scaling function ¢(t) must be such that

translations of ¢(t) constitute an orthonormal set of
functions, 1.e.,

/_ Z P0.k(t)pon(t)dt = /_ Z

Its design is not considered in this course, but some
existing scaling functions are applied.




T'’he Approximation Signal xo(t)

Therefore, the scaling functions ¢g (t) are said to span a subspace Vy of the
whole space of square integrable functions denoted L?(R.),

Vo = sp’?,n{goo,k(t)}. (4.313)




T'’he Approximation Signal x;(t)

cj(n)@jn(t)

(dyadic sampling) = 27/2 Z c;i(n)p(27t — n),

n=-—oo

where

It is important to realize that, for j > 0, the span increases since @;(t)
contracts in time, thereby allowing details of z(t) to be better represented
by the approximation signal z;(¢). On the other hand, only the coarser
information can be represented for j < 0 since ¢;(?) then expands.




T'he Multiresolution Property

The subspace V; is spanned by ¢, (%),

Vj = Spl?n{soj,k(t)}, (4.320)

which has a time resolution only half as good as that of V1 since the scaling
function in Vj41 is contracted by a factor of two, i.e., p(2/T1t) in relation
to p(27t).

Each subspace is spanned by a different set of basis functions ¢, 1 (), offering
progressively better approximations such that z;(t) approaches x(t) in the
limit as 7 — oc,

lim z;(t) = «(t), (4.322)

J— o




T'he Refinement Equation

hy(n) is a sequence of scaling coefficients




'1he Wavelet Function

* It is desirable to introduce the function (t) which
complements the scaling function by accounting for
the details of a signal rather than its approximations.

* For this purpose, a set of orthonormal basis functions
at scale j is given by

ik (t) = 297220t — k),

which spans the difference between the two subspaces
Vj and Vj+1.




Scaling and Wavelet Functions

At scale 7 + 1, the subspace describing
signal detail 1s given by

W; = span{t4(1)} (4.325)

where the wavelet functions that span W; are required to be orthonormal to
the scaling functions of V;,

| et =o (4.326)

— OO0

for all indices 7 and k.




Orthogonal Complements

In the subspace Vj41, W; 1s sald to constitute an orthogonal complement
to V; which is denoted

Vis1 = V; & W, (4.327)

where & denotes the direct sum between two subspaces. Since (4.327) is
valid for an arbitrary value of 7., we also have that

Vi = V1D W1, (4.328)

which, when continued until a certain value jo (< j) is reached, yields the
decomposition

Vit1 = Vjo © Wi © Wjo41 B ... S W;. (4.329)

As j approaches infinity, the subspace decomposition can be expressed as

(4.330)




T'he Wavelet Series Expansion

a wavelet series expansion in terms of the scaling coefficients ¢, (k) and the
wavelet coefficients d;(k),

o0
Z Cjo (1) Pjo.n(t) + S: dj(n)Yjn(t (4.333)

o0
>
Nn=—00 j=jo n=—0o<

Compare this expansion with the orthogonal expansions
mentioned earlier such as the one with sine/cosine basis
functions, i.e., the Fourier series. The wavelet/scaling
coefhicients do not have a similar simple interpretation.




Multiresolution Signal Analysis:
A Classical Example

The Haar The Haar

scaling function wavelet function

I, 0<t< %;
~1, 3<t<l;
0, otherwise,

1, 0<t<1;
0, otherwise.

p(t) =

[he(0) ho(1)] = [J5

These functions are individually and mutually orthonormal




T'he Haar Scaling Function

p(27t — k)

k
0
1
2
3
4
5
6
7




Haar Multiresolution Analysis

Approximation

. Detail signals
signals
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Haar Scaling and

Wavelet Functions

Vi (2t —k)

vt —k) Wo

Figure 4.42: Decomposition of the subspace Vi = Vo & Wh by the Haar scaling
and wavelet functions.




Computation of Coethicients

The scaling and wavelet coefhicients can computed
recursively by exploring the refinement equation

so that, for example, the scaling coefhicients are
computed with

o0
cj(k) = Z ho(n — 2k)cjy1(n) see derivation

S on page 300
= hy(—n) * cjr1(n)|n=2k- page 3




Filter Bank Implementation

h,(—n) | 2 —> cj(k)

ci+1(k) —

hy(—n) — d;(k)

c1(k),

12

hy(—n)]

d1 (k)

da(k)

hy(—n) |2

Figure 4.43: (a) A two-channel analysis filter bank for calculating the coefficients
of the wavelet series expansion in (4.333). (b) The discrete wavelet transform based
on the filter bank in (a), which, in this case, produces the coefficients that decompose
the space V3 into Vo, Wh. Wi, and Wk.




DW'T Calculation

c3(0), c3(1),c3(2),c3(3),c3(4),c3(5), c3(6), c3(7)

‘///’/////////’\\\\\\\\\\\\\\‘

c2(0), c2(1), c2(2), c2(3) d2(0), d2(1), d2(2), da(3)

O .

C1 (0)? Cl(l) dl (O)a-dl(l) dQ(O)? d2(1) d2(2)? d2(3)

/N |

c0(0) | do(0) | d1(0),dy1(1) d2(0), d2(1), d2(2), d2(3)

Figure 4.44: Calculation of the DW'T for a signal of length N = 8. The final result
is given by the coefficients at the bottom for ;7 = 0. The vertical arrows indicate that
the coefficients are simply copied down from the previous scale. The calculation is
initialized by setting the coefficients c3(k) equal to the signal samples x(k).




Inverse DW'I" Calculation

cj(k)—

dj(k)=—> 1

12
CQ(k)

> 12 hy(n)

Figure 4.45: (a) A two-channel synthesis filter bank. (b) The inverse discrete
wavelet transform based on the filter bank in (a) which, in this case, produces the
coefficients of the space V3 based on Vo, Wo. Wy. and W,




Scaling Function Examples

h—

Amplitude

(f) |

——

N . 2 N N
5 10 20
Time Time Time

Amplitude

Figure 4.46: The scaling function (dotted line) and wavelet function (solid line) for
(a) Daubechies-2, (b) Daubechies-5, (¢) Daubechies-10, (d) Coiflet-1, (e) Coiflet-2,
and (f) Coiflet-4. Note that the timescale differs between the diagrams.




Coiflet Multiresolution Analysis
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Scaling Coethcients in Noise
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Denoising of Evoked Potentials
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Visual EP

coefficients

of W3

reconstructed
waveform

coefhicients
of 13

reconstructed
waveform

EP Wavelet Analysis
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EP Wavelet Analysis, cont’

Waveftorms reconstructed from 173 and superimposed for
24 normal subjects (upper panel) and for 16 patients with
dementia (lower panel).
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