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POTENTIALS 



Evoked Potentials (EPs) 

Event-related brain activity where the stimulus is 
usually of sensory origin. 

Acquired with conventional EEG electrodes. 

Time-synchronized = time interval from stimulus to 
response is usually constant. 



EP = A Transient Waveform 

Evoked potentials are usually ”hidden" in the EEG 
signal. 

Their amplitude ranges from 0.1–10 µV, to be 
compared with 10–100 µV of the EEG. 

Their duration is 25–500 milliseconds. 



Examples of  Evoked Potentials 

Note the widely different amplitudes and time scales. 



EP – Definitions 

Time for 
stimulus 

Latency 

Amplitude 



Auditive Evoked Potentials– 
AEPs 



Visual Evoked Potentials– 
VEPs 



Somatosensory Evoked 
Potentials–SEPs 



SEPs during Spinal Surgery 

electrode #1 electrode #2 

stimulation 

recording
electrodes 



EP Scalp Distribution 



 
 

 

A. Evoked potentials 
resulting from a color 
task in which red and 
blue flashed checker-

boards were presented
in a rapid, randomized
sequence at the center 

of the screen. 

B. Scalp voltage 
distributions evoked 

potentials at different
latency ranges.



Brainstem Auditive EP 
(BAEPs) in Newborns 
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BAEPs of  Healthy Children 
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Cognitive EPs 



Ensemble Formation 



Formation of  an EP Ensemble 
stimulus# 

EEG signal 
EP

 e
ns

em
bl

e 



10 Superimposed EPs 

latency (ms)

am
pl

itu
de

 (m
ic

ro
V
)



Model for Ensemble Averaging 

fixed shape 



Noise Assumptions 

I. 

II. 

III. 



 

Ensemble Averaging
The ensemble average is defined by

The more familiar (scalar)
expression for ensemble

averaging is given by



Ensemble Averaging 

evoked potentials 



Noise Variance 

The variance of the ensemble average is inversely 
proportional to the the number of averaged potentials, 

that is: 



 
 

Reduction of  Noise Level 

#potentials 

The noise estimate  
before division by the

reduction factor 
1/
√
M

Reduction in noise level 
of the ensemble average

as a function of 
#potentials 



Exponential averaging 

The ensemble average can be 
computed recursively because: 

assuming 

Exponential averaging results from 
replacing the weight 1/M with alpha: 



Exponential averaging 



Noise Reduction of  EPs with 
Varying Noise Level 

Assumption: all evoked potentials have 

identical shapes s(n) but with 

varying noise level. 

Such an heterogenous ensemble is processed by 
weighted averaging. 



 

Weighted Averaging 
The weighted average is obtained by weighting each 

potential xi(n) with its inverse noise variance:

where each 
weight wi

thus is

This expression reduces to the ensemble average when 
the noise variance is identical in all potentials.



Weighted Averaging, cont’ 

How to estimate 
the varying noise level?



 

Weighted averaging: An Example 

W eight ed 
a vera ge 

Ensemble 
a vera ge 

The ensemble
consists of 80 EPs

with variance 1 and
20 EPs with variance
20 (heterogenous)



Robust Waveform Averaging 

Gaussian 
noise 

Laplacian 
noise 



The Effect of  Latency Variations 

xi(n) = s(n−θi)+ vi(n)

Signal model: 



Lowpass Filtering of  the Signal 

The expected value of the ensemble average, in 
the presence of latency variations, is given by: 

or, equivalently, in the frequency domain: 



Latency Variation and 
Lowpass Filtering 

Gaussian PDF Uniform PDF 



 

 

Techniques for Correction of 
Latency Variations 

Synchronize with respect to a peak of the signal or 
similar property. 

Crosscorrelation between two EPs. 

Woody’s method for iterative synchronization of all
responses of the ensemble. The method terminates 
when no further latency corrections are done. 



Estimation of  Latency 
An Illustration 

Input signal 

Template 
waveform 

Correlation 
function 

Latency estimate 



Woody’s Method 



Woody’s Method: Different SNRs 

good SNR 

not so 
good SNR 

bad SNR 



       

       
the ensemble average. The optimal “filter” is 

SNR-based Weighting 

E
[
(s(n)− ŝa(n)w(n))2

]

Design a weight function  which minimizesw(n)

where denotes the desired signal and s(n) ŝa(n)

w(n) =
σ2s(n)

σ2s(n)+σ2v
M

=
1

1+ σ2v
Mσ2s(n)



SNR-based Weighting 

Noise-free signal 

Ensemble average 

Weight function 

Weight function multiplied
with ensemble average 



Noise Reduction by Filtering 

Estimate the signal and noise power spectra from the 
ensemble of signals. 

Design a linear, time-invariant, linear filter such that 
the mean square error is minimized, i.e., design a
Wiener filter. 

Apply the Wiener filter to the ensemble average to 
improve its SNR. 
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Wiener Filtering 

Ss(e jω)

Sv(e jω)

: signal power spectrum 

: noise power spectrum 

Wiener filter: 

H(e jω) =
Ss(e jω)

Ss(e jω)+ (e jω)

for one potential 

H(e jω) =
Ss(e jω)

Ss(e jω)+ v(e jω)

for M potentials 
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Limitations of  Wiener filtering 

Assumes that the observed signal is stationary (which 
in practice it is not...). 

Filtering causes the EP peak amplitudes to be severely 
underestimated at low SNRs. 

As a result, this technique is rarely used in practice. 



Tracking of  EP Morphology 

So far, noise reduction has been based on the entire 
ensemble, e.g., weighted or exponential averaging 

We will now track changes in EP morphology by so-
called single-sweep analysis. More a priori information 
is introduced by describing each EP by a set of basis 
functions. 



 

Selection of  Basis Functions 

Orthonormality is an important function property 
of basis functions. 

Sines/cosines are well-known basis functions, but it 
is often better to use... 

...functions especially determined for optimal (MSE)
representation of different waveform morphologies 
(the Karhunen-Loève representation). 



Orthogonal Expansions 



Basis Functions: An Example 

Linear combinations 
of two basis functions 

model a variety of
signal morphologies 



Calculation of  the Weights 



Mean-Square Weight Estimation 

i.e. identical to the 
previous expression 



 

Truncated Expansion 
The underlying idea of signal estimation through a 
truncated series expansion is that a subset of basis 
functions can provide an adequate representation of 
the signal part. 

Decomposition into 
”signal” and ”noise” parts: 

The estimate of the signal
is obtained from: 



Truncated Expansion, cont’ 



Examples of  Basis Functions 

Sine/
Cosine 

Walsh 



Sine/Cosine Modeling 

K = 3 

VEP without noise 

#basis functions 

K = 7 

K = 12 

K = 500 



Sine/Cosine Modeling: Amplitude 
Estimate and MSE Error 



MSE Basis Functions 
How should the basis functions be designed so that the 

signal part is efficiently represented with 
a small number of functions? 

We start our derivation by decomposing the series 
expansion of the signal into two sums, that is, 



 

Karhunen–Loève Basis Functions 
The Karhunene–Loève (KL) basis functions, minimizing 

the MSE, are obtained as the solution of the ordinary 
eigenvalue problem, and equals the eigenvectors 

corresponding to the largest eigenvalues: 

The MSE equals the sum of the (N-K)
smallest eigenvalues 



KL Performance Index 

Example of the
performance index



How to get Rx? 



Example: KL Basis Functions 
Basis functions Signals 

Observed 
signal: xi

ŝi
Signal
estimate: 



Time-Varying Filter Interpretation 



Modeling with Damped Sinusoids 

The original Prony method 

The least-squares Prony method

Variations 



Adaptive Estimation of  Weights 



 

Adaptive Estimation of  Weights 

The instantaneous LMS algorithm, in which the 
weights of the series expansion are adapted at every 
time instant, thereby producing a weight vector w(n)

The block LMS algorithm, in which the weights are 
adapted only once for each EP (“block”), thereby
producing a weight vector wi that corresponds to the 
i:th potential. 



Estimation Using Sine/Cosine 



Estimation Using KL Functions 



Limitations 

Sines/cosines and the KL basis functions lack the 
flexibility to efficiently track changes in latency of 
evoked potentials, i.e., changes in waveform width. 

The KL basis functions are not associated with any 
algorithm for fast computations since the functions are 
signal-dependent. 



Wavelet Analysis 
Wavelets is a very general and powerful class of basis 
functions which involve two parameters: one for 
translation in time and another for scaling in time. 

The purpose is to characterize the signal with good 
localization in both time and frequency. 

These two operations makes it possible to analyze the 
joint presence of global waveforms (“large scale”) as 
well as fine structures (“small scale”) in a signal. 

Signals analyzed at different scales, with an increasing 
level of detail resolution, is referred to as a multi-
resolution analysis. 



Wavelet Applications 

signal characterization 

signal denoising 

data compression 

detecting transient waveforms 

and much more! 



The Correlation Operation 
Recall the fundamental operation in orthonormal basis 

function analysis: in discrete-time, the correlation between 
the observed signal x(n) and the basis functions ϕk(n): 

In wavelet analysis, the two operations of scaling and 
translation in time are most simply introduced when the 

continuous-time description is adopted: 



The Mother Wavelet 



The Wavelet Transform 
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The Scalogram 

Composite
signal 

Scalogram 



 
The Discrete Wavelet Transform 

The discrete wavelet 
transform (DWT)

The inverse discrete 
wavelet transform (IDWT)

The CWT w(s, τ ) is highly redundant 
and needs to be sampled 

Dyadic sampling 

The discretized wavelet 
function 



  
 

Multiresolution Analysis 

A signal can be viewed as the sum of a smooth (“coarse”)
part and a detailed (“fine”) part. 

The smooth part reflects the main features of the 
signal, therefore called the approximation signal. 

The faster fluctuations represent the signal details. 

The separation of a signal into two parts is determined 
by the resolution with which the signal is analyzed, i.e., 
by the scale below which no details can be discerned. 



Multiresolution Analysis Exemplified 



Multiresolution Analysis, cont’ 
In mathematical terms this is expressed as: 



 

 

The Scaling Function 

The scaling function ϕ(t) is introduced for the purpose 
of efficiently representing the approximation signal xj(t)
at different resolution. 

This function, being related to a unique wavelet 
function ψ(t), can be used to generate a set of scaling 
functions defined by different translations: 

where the index “0” indicates that no time scaling is
performed. 



The Scaling Function, cont’ 

The design of a scaling function ϕ(t) must be such that 
translations of ϕ(t) constitute an orthonormal set of 
functions, i.e., 

Its design is not considered in this course, but some 
existing scaling functions are applied. 



The Approximation Signal x0(t) 



The Approximation Signal xj(t) 

(dyadic sampling)



The Multiresolution Property 



The Refinement Equation 

hϕ(n) is a sequence of scaling coefficients 



The Wavelet Function 

It is desirable to introduce the function ψ(t) which 
complements the scaling function by accounting for 
the details of a signal rather than its approximations. 

For this purpose, a set of orthonormal basis functions 
at scale j is given by 

which spans the difference between the two subspaces 
Vj and Vj+1. 



Scaling and Wavelet Functions 



Orthogonal Complements 



The Wavelet Series Expansion 

Compare this expansion with the orthogonal expansions 
mentioned earlier such as the one with sine/cosine basis 

functions, i.e., the Fourier series. The wavelet/scaling 
coefficients do not have a similar simple interpretation. 



Multiresolution Signal Analysis: 
A Classical Example 

The Haar 
scaling function 

The Haar 
wavelet function 

These functions are individually and mutually orthonormal 



The Haar Scaling Function 



Haar Multiresolution Analysis 

Approximation 
signals Detail signals 



Haar Scaling and 
Wavelet Functions 



 

Computation of  Coefficients 
The scaling and wavelet coefficients can computed 
recursively by exploring the refinement equation 

so that, for example, the scaling coefficients are 
computed with 

see derivation 
on page 300 



Filter Bank Implementation 



DWT Calculation 



Inverse DWT Calculation 



Scaling Function Examples 



Coiflet Multiresolution Analysis 



Scaling Coefficients in Noise 



Denoising of  Evoked Potentials 



EP Wavelet Analysis 

coefficients 
of W3 

reconstructed 
waveform 

coefficients 
of V3 

reconstructed 
waveform 

Visual EP 

from Ademoglu et al., 1997 



EP Wavelet Analysis, cont’ 

Normal 

Dement 

Waveforms reconstructed from V3 and superimposed for
24 normal subjects (upper panel) and for 16 patients with

dementia (lower panel). 
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