THE ELECTRICAL ACTIVITY OF THE HEART

The Heart...

- * is a muscle which is a pump with a capacity of ~7 liter/min.
- * has 4 chambers: 2 atria and 2 ventricles.
- * contracts thanks to electrical coordination of the muscle cells.
- * has a conducting system for fast activation.
- * is paced by the sinoatrial node, i.e., the natural pacemaker).

Blood Flow of the Heart

Conduction System of the Heart

Cardiac Excitation

atrial excitation

ventricular excitation

Electrical Vectors of the Heart

dominant vector

The vector associated with each group of cells in the myocardium is summed into a dominant vector describing the main direction of the electrical impulse.

Cardiac Excitation

Extremity Leads – I, II, III

Precordial Leads – V_1 to V_6

The Standard 12-lead ECG

The Vectorcardiogram (VCG)

ECG Waves: P-QRS-T

ECG normality is related to PQRST amplitudes and durations

Normal Sinus Rhythms

Heart Rate Variability

Arrhythmias: Ectopic Beats

Supraventricular ectopic beat

🔖 Ventricular ectopic beats 🍃

Arrhythmias: Bi- & Trigeminy

Arrhythmias: Atrial Flutter/Fibrillation

Arrhythmias: Ventricular Flutter/Fibrillation

Heart Attack (Myocardial Infarction)

Infarction: tissue of the heart wall (myocardium) which has died

Myocardial Ischemia

Ischemia: insufficient supply of oxygenated blood to the heart.

Clinical ECG Applications

- * Resting ECG
- * Intensive care monitoring
- * Ambulatory monitoring
- * Exercise stress test
- * High-resolution ECG
- * Defibrillation

The Exercise Stress Test

Exercise usually starts at a low workload.

The load is thereafter increased progressively.

Exercise is terminated when the patient experiences fatigue or chest pain.

To be fighted: EMG noise and baseline wander

Stress Testing and Ischemia – ECG Reaction

Stress Testing and Ischemia – ECG Reaction

ST Reaction Versus Heart Rate – Decision Regions

Heart rate (bpm)

High-Resolution ECG and Cardiac Late Potentials

Ensemble averaging made the discovery of late potentials possible. Their presence is a risk factor in patients with heart attack.

Spectral Analysis of the ECG?

Spectral Analysis of Heart Rate?

EEG, EP, and ECG: Time Base?

- * EEG analysis resembles that of a "stochastic process" and has no particular reference time.
- * EP analysis starts from a known reference time of each stimulation.
- * ECG analysis starts from an estimated reference time of each heart beat.

ECG Signal Processing

- * Noise and artifact cancellation
- * QRS detection
- * Data compression
- * Classification of QRS complex morphology
- * Analysis of heart rate variability
- * Detection of micropotentials
- * And much more!

ECG Filtering Techniques...

- * Baseline wander is narrowband activity which is confined to frequencies below 1 Hz.
- * 50/60 Hz interference is common in environments with electrical devices. Shielded recording equipment is important.
- * EMG noise overlaps with the spectral content of the ECG, notably the QRS complex.

ECG Baseline Wander

Baseline Filtering: Phase Aspects

Baseline Filtering: An Example

Cubic Spline Interpolation

50/60 Hz LTI Notch Filter

Nonlinear 50-Hz Filtering

- * The nonlinear filter is based on the idea of subtracting a sinusoid, generated internally by the filter, from the observed signal.
- * The amplitude of the internal sinusoid is adapted to the powerline interference present in the observed signal x(n).
- * The adaptation process is the key to making the filter less sensitive to transients and avoiding related filter ringing.

Nonlinear 50-Hz Filtering, cont'

The transfer function for the internal oscillator is

$$H(z) = \frac{V(z)}{U(z)} = \frac{1}{1 - 2\cos\omega_0 z^{-1} + z^{-2}},$$

and thus the sinusoid results from the difference equationn

$$v(n) = 2\cos\omega_0 v(n-1) - v(n-2) + u(n),$$

A new estimate of the 50-Hz component is obtained by

 $\hat{v}(n) = v(n) + \alpha \operatorname{sgn}(e(n)), \qquad e(n) = x(n) - v(n).$

which then is subtracted from the ECG

 $y(n) = x(n) - \hat{v}(n).$

Nonlinear Filtering Exemplified

Original signal

Notch filtering

Nonlinear filtering

QRS Detection Problems, cont'd

Spectral ECG properties

How to decide the frequency response of the filter? Which type: Squarer, rectifier,... Choice of thresholds: Only amplitude threshold? Fixed or adaptive?

Models for QRS Detection

$$x(n) = s(n) + v(n)$$

signal in noise

$$x(n) = s(n - \theta) + v(n)$$

$$x(n) = As(n - \theta) + v(n)$$

unknown occurrence time

unknown occurrence time and amplitude

$$x(n) = \sum_{i=1}^{q} A_i s(n - \theta_i) + v(n)$$

unknown number of QRS's, occurrence time, and amplitude

Design of Linear Detection Filter

Our approach: find the maximum likelihood (ML) estimate for the unknown occurrence time in the model:

$$x(n) = s(n - \theta) + v(n)$$

ML estimator:

$$y(\theta) = \sum_{n=0}^{N-1} h(n)x(\theta - n)$$
$$\hat{\theta} = \arg\max_{\theta} y(\theta)$$

 N_1

where h(n) = s(N-1-n) is the matched filter!

Matched Filtering

Simple Detector Filter Structures

A useful class of filter system functions is defined by:

Simple Filters for QRS Detection – Frequency Response

Design of Nonlinear Transformation

* Formal design may be based on a statistical assumption on the amplitude *A* in the model

$$x(n) = As(n - \theta) + v(n)$$

leading to complicated calculations in most cases.

* The rectifier or squarer is often used. In fact, the squarer is optimal for the ML approach (see the textbook).

Envelope Examples

ECG

Hilberttransformed ECG

Envelope

Preprocessor Output

Preprocessor Output

QRS Detection: Decision Rule

QRS Detector Performance

T

Q 0.9 Probability of detection, 0.80.73 different 0.6detectors 0.50.30.10.20.40.50 Probability of false detection, P_F

Receiver operating characteristic (ROC)

QRS End Delineation

Figure 7.27: Determination of the QRS end using slope information. The QRS end is the time at which the differentiated signal crosses a threshold after the maximum slope has occurred. The threshold level is usually expressed as a percentage of the maximum slope.

LPD-based Delineation

LPD: Lowpass filtered differentiation

Data Compression

- * The overall goal is to represent a signal as accurately as possible using the fewest number of bits.
- * Lossless compression: the compressed/ reconstructed signal is an exact replica of the original signal.
- * Lossy compression: the reconstructed signal is allowed to differ from the original signal.
- * With lossy compression, a certain amount of distortion has to be accepted in the reconstructed signal, although the distortion must remain small enough not to modify or jeopardize the diagnostic content of the ECG.

ECG Data Redundancy

The three main types of data redundancy in the ECG signal are:

- * Intersample (intrabeat) redundancy.
- * Interbeat redundancy is manifested, within each lead, by successive, similar-looking heartbeats.
- * Interlead redundancy is due to the fundamental fact that a heartbeat is "viewed" concurrently in different leads.
Data Compression of ECG Signals

Lossless Data Compression based on Linear Prediction

Linear Prediction

ECG

1st difference

2nd difference

optimal 3rd order predictor

Lossy Data Compression

- * Direct Methods
 - * Amplitude zone time epoch coding (AZTEC)
 - * Scan-along polygonal approximation (SAPA)
- * Transform methods
 - * Karhunen-Loève transform (KLT)
 - * Wavelets and wavelet packets.

The SAPA Principle

ε: error tolerance

KLT-based Data Compression

KLT Compression with Tolerance

KLT Using Universal Data

KLT Using Subject-Specific Data

Handling Interbeat Redundancy

Average beat subtraction

Handling Interlead Redundancy

Performance Measures

Percentage root meansquare difference (PRD)

$$\mathcal{P}_{PRD} = \sqrt{\frac{\sum_{n=0}^{N-1} (x(n) - \tilde{x}(n))^2}{\sum_{n=0}^{N-1} x^2(n)}} \cdot 100,$$

Note: While the loss of a tiny Q wave in the reconstructed signal essentially goes unreflected in P_{PRD} , the absence of a Q wave represents an essential loss from a diagnostic point of view when, for example, diagnosing myocardial infarction.

Better performance measures need to be defined!

Heart Rate Variability (HRV)

- * indirect measure on autonomic nerve function,
- * reflects interaction with:
 - * cardiac activity
 - * respiration
 - * blood pressure
 - * body temperature

Herbert von Karajan conducting the Leonora ouverture #3 by Beethoven

 T_i = length of the ith RR interval

Note: the PP intervals better reflect the sinus node activity than do the RR intervals. However, the location of the P-wave is much more difficult to determine than that of the QRS complex.

24-hour RR interval trend

24h RR Interval Histograms

How to characterize the histogram?

The RR interval series – The Tachogram

Advantage: simple to compute Disadvantage: spectrum is not in terms of Hz

Heart Rhythm Representations

The interval tachogram

$$d_{\mathrm{IT}}(k) = t_k - t_{k-1}, \quad k = 1, \dots, M,$$

The inverse interval tachogram

$$d_{\text{IIT}}(k) = \frac{1}{t_k - t_{k-1}}, \quad k = 1, \dots, M,$$

The inverse interval function

$$d_{\rm IF}^{u}(t) = \sum_{k=1}^{M} (t_k - t_{k-1}) \,\delta(t - t_k)$$

The inverse interval function

$$d_{\mathrm{IIF}}^{u}(t) = \sum_{k=1}^{M} \left(\frac{1}{t_k - t_{k-1}}\right) \delta(t - t_k)$$

Heart Rhythm Representations

The ECG

The interval tachogram

The inverse interval tachogram

The inverse interval function

The inverse interval function

Lowpass Filtered Event Series

Integral Pulse Frequency Modulation (IPFM) Model

Output of the IPFM Model

IPFM model equation

$$\int_{t_{k-1}}^{t_k} (m_0 + m(\tau)) d\tau = R, \quad k = 1, \dots, M.$$

Event series as output

$$d_{\rm E}^u(t) = \sum_{k=0}^M \delta(t - t_k),$$

Heart Timing Signal

$$d_{\mathrm{HT}}^{u}(t) = \sum_{k=0}^{M} (kT_{I} - t_{k})\delta(t - t_{k})$$
$$= \sum_{k=0}^{M} d_{\mathrm{HT}}(t)\delta(t - t_{k}),$$

i.e., defined as the deviation of the event time t_k from the expected occurrence time which is related to the mean RR interval length

Compare this with the IPFM model:

$$\int_0^{t_k} m(\tau) d\tau = kT_I - t_k$$
$$= d_{\rm HT}(t_k).$$

Heart Timing Signal: Example

Why Spectral Analysis of HRV?

Spectrum of Counts

Event series

$$x(t) = \sum_{k=1}^{N} \delta(t - t_k)$$

X(

Fourier transform

$$\Omega) = \int_{-\infty}^{\infty} x(t) e^{-j\Omega t} dt$$
$$= \sum_{k=1}^{N} e^{-j\Omega t_k} = \sum_{k=1}^{N} (\cos \Omega t_k + j \sin \Omega t_k)$$

Power spectrum

$$S_x(\Omega) = \frac{1}{N} \left[\left(\sum_{k=1}^N \cos \Omega t_k \right)^2 + \left(\sum_{k=1}^N \sin \Omega t_k \right)^2 \right]$$

Lomb's Periodogram

The main idea behind Lomb's periodogram is the definition of a spectrum that results from minimization of the squared error between the observed data d(t_k) and a sinusoidal model signal s(t_k; Ω),

$$\mathcal{E} = \sum_{k=0}^{M} (d(t_k) - s(t_k; \Omega))^2, \qquad (8.50)$$

where

$$s(t_k; \Omega) = a_1 \cos(\Omega t_k) + a_2 \sin(\Omega t_k). \tag{8.51}$$

Lomb's Periodogram, cont'

$$\hat{S}_{d^u}(\Omega) =$$

$$= \frac{1}{M+1} \left[\frac{\left(\sum_{k=0}^{M} d(t_k) \cos(\Omega(t_k - \tau)) \right)^2}{\sum_{k=0}^{M} \cos^2(\Omega(t_k - \tau))} + \frac{\left(\sum_{k=0}^{M} d(t_k) \sin(\Omega(t_k - \tau)) \right)^2}{\sum_{k=0}^{M} \sin^2(\Omega(t_k - \tau))} \right]$$
(8.69)

where τ is introduced to make Lomb's periodogram translation invariant in time, implying that identical periodograms are produced irrespective of where the observed samples are located in time.

Lomb's Periodogram and the Classical Periodogram

Lomb's periodogram reduces to the classical periodogram when the event times t_k are evenly sampled with the sampling interval T_I , i.e., $t_k = kT_I$, at the Nyquist rate or higher.

HRV Spectral Analysis

HRV Spectrum: A Comparison

- * Spectrum of interval tachogram,
- * spectrum of inverse interval function,
- * spectrum of counts,
- * spectrum of the lowpass filtered event series...
- * ... are shown in the following slides!
Power Spectrum with One Modulation Frequency (0.16 Hz)

event series

LPFES

Power Spectrum with Two Modulation Frequencies (0.12, 0.16)

HRV and Sudden Cardiac Death

Power spectrum (log scale)

Spectral power in 0.35-0.50 Hz

Group I: normals

Group 2: diseased (many ectopics), low risk for SCD Group 3: resuscitated from ventr. fibrillation, high risk for SCD

Ectopic Beat Correction

RR Interval or Heart Rate?

- * Heart rate is inversely proportional to RR interval length.
- * These two quantities appear to represent the same information, but the corresponding power spectra are obviously somewhat different.

